当前位置: X-MOL 学术Tribol. Int. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Adhesion Modelling by Finite Elements of Three-dimensional Fretting
Tribology International ( IF 6.1 ) Pub Date : 2021-04-01 , DOI: 10.1016/j.triboint.2020.106802
Huaidong Yang , Itzhak Green

Abstract This work builds a comprehensive adhesion model by finite elements (FEA) for a deformable hemisphere subject to fretting. The hemisphere is constrained between two rigid and frictionless plates as it loaded in the normal direction and followed by prescribe oscillatory tangential motions. The material for the deformable hemisphere is gold (Au). The normal direction adhesion contact is based on the classic JKR model; however, the tangential resistance is based on the definition of the shear strength and the surface free energy. That is manifested into interfacial bilinear springs where detachment or reattachment of the two contacting surfaces occur when the springs “break” or “snap-back” at the interface. It is shown that the breakage of the springs may be gradual or avalanching. The tangential resistance effect is robust, that is, it is not influenced by the choice of meshing or the spring settings. When the two surfaces are about to detach, the most part of the contact region deforms plastically. At small fretting amplitudes (with no springs breakage), the fretting loop behaves similarly to that of full stick conditions. Hence, the von-Mises stress distributions, plastic strain distributions, and fretting loops, are similar to those of full stick condition. However, the current adhesion model is structurally less stiff because of the bilinear spring. Conversely, at a large oscillation amplitude, the fretting loop exhibits large energy losses, and yet it is does not resemble those of gross slip conditions.

中文翻译:

三维微动有限元粘附建模

摘要 这项工作通过有限元 (FEA) 为受微动影响的可变形半球建立了综合粘附模型。半球被约束在两个刚性和无摩擦板之间,因为它在法线方向上加载,然后进行规定的振​​荡切向运动。可变形半球的材料是金(Au)。法向粘附接触基于经典的JKR模型;然而,切向阻力是基于剪切强度和表面自由能的定义。这体现在界面双线性弹簧中,当弹簧在界面处“断裂”或“弹回”时,两个接触表面会发生分离或重新连接。结果表明,弹簧的断裂可能是逐渐的或雪崩的。切向阻力效应是稳健的,即 它不受网格选择或弹簧设置的影响。当两个表面即将分离时,接触区域的大部分发生塑性变形。在小微动振幅(没有弹簧断裂)下,微动环的行为类似于全杆条件下的微动环。因此,von-Mises 应力分布、塑性应变分布和微动环类似于全杆条件下的那些。然而,由于双线性弹簧,当前的粘附模型在结构上不那么僵硬。相反,在大的振荡幅度下,微动环表现出很大的能量损失,但它与粗滑差条件不同。在小微动振幅(没有弹簧断裂)下,微动环的行为类似于全杆条件下的微动环。因此,von-Mises 应力分布、塑性应变分布和微动环类似于全杆条件下的那些。然而,由于双线性弹簧,当前的粘附模型在结构上不那么僵硬。相反,在大的振荡幅度下,微动环表现出很大的能量损失,但它与粗滑差条件不同。在小微动振幅(没有弹簧断裂)下,微动环的行为类似于全杆条件下的微动环。因此,von-Mises 应力分布、塑性应变分布和微动环类似于全杆条件下的那些。然而,由于双线性弹簧,当前的粘附模型在结构上不那么僵硬。相反,在大的振荡幅度下,微动环表现出很大的能量损失,但它与粗滑差条件不同。由于双线性弹簧,当前的粘附模型在结构上不那么僵硬。相反,在大的振荡幅度下,微动环表现出很大的能量损失,但它与粗滑差条件不同。由于双线性弹簧,当前的粘附模型在结构上不那么僵硬。相反,在大的振荡幅度下,微动环表现出很大的能量损失,但它与粗滑差条件不同。
更新日期:2021-04-01
down
wechat
bug