当前位置: X-MOL 学术Chem. Geol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The lithium and magnesium isotope signature of olivine dissolution in soil experiments
Chemical Geology ( IF 3.6 ) Pub Date : 2021-01-01 , DOI: 10.1016/j.chemgeo.2020.120008
Philip A.E. Pogge von Strandmann , Phil Renforth , A. Joshua West , Melissa J. Murphy , Tu-Han Luu , Gideon M. Henderson

Abstract This study presents lithium and magnesium isotope ratios of soils and their drainage waters from a well-characterised weathering experiment with two soil cores, one with olivine added to the surface layer, and the other a control core. The experimental design mimics olivine addition to soils for CO2 sequestration and/or crop fertilisation, as well as natural surface addition of reactive minerals such as during volcanic deposition. More generally, this study presents an opportunity to better understand how isotopic fractionation records weathering processes. At the start of the experiment, waters draining both cores have similar Mg isotope composition to the soil exchangeable pool. The composition in the two cores evolve in different directions as olivine dissolution progresses. Mass balance calculations show that the water δ26Mg value is controlled by congruent dissolution of carbonate and silicates (the latter in the olivine core only), plus an isotopically fractionated exchangeable pool. For Li, waters exiting the base of the cores initially have the same isotope composition, but then diverge as olivine dissolution progresses. For both Mg and Li, the transport down-core is significantly retarded and fractionated by exchange with the exchangeable pool. This observation has implications for the monitoring of enhanced weathering using trace elements or isotopes, because dissolution rates and fluxes will be underestimated during the time when the exchangeable pool evolves towards a new equilibrium.

中文翻译:

土壤实验中橄榄石溶解的锂和镁同位素特征

摘要 本研究展示了土壤及其排水的锂和镁同位素比率,这些数据来自具有两个土壤核心的充分表征的风化实验,一个在表层添加橄榄石,另一个是控制核心。实验设计模拟橄榄石添加到土壤中以进行 CO2 封存和/或作物施肥,以及在火山沉积期间等活性矿物质的天然表面添加。更一般地说,这项研究为更好地了解同位素分馏如何记录风化过程提供了机会。在实验开始时,排出两个岩心的水具有与土壤可交换池相似的镁同位素组成。随着橄榄石溶解的进行,两个岩心的成分向不同的方向演变。质量平衡计算表明,水的 δ26Mg 值受碳酸盐和硅酸盐(后者仅在橄榄石核中)的一致溶解以及同位素分馏可交换池控制。对于 Li,从岩心底部流出的水最初具有相同的同位素组成,但随着橄榄石溶解的进行,随后会发生分歧。对于 Mg 和 Li,通过与可交换池的交换,向下核的传输显着延迟和分馏。这一观察结果对使用微量元素或同位素监测增强的风化具有影响,因为在可交换池朝着新的平衡发展的过程中,溶解速率和通量将被低估。加上一个同位素分馏的可交换池。对于 Li,从岩心底部流出的水最初具有相同的同位素组成,但随着橄榄石溶解的进行,随后会发生分歧。对于 Mg 和 Li,通过与可交换池的交换,向下核的传输显着延迟和分馏。这一观察结果对使用微量元素或同位素监测增强的风化具有影响,因为在可交换池朝着新的平衡发展的过程中,溶解速率和通量将被低估。加上一个同位素分馏的可交换池。对于 Li,从岩心底部流出的水最初具有相同的同位素组成,但随着橄榄石溶解的进行,随后会发生分歧。对于 Mg 和 Li,通过与可交换池的交换,向下核的传输显着延迟和分馏。这一观察结果对使用微量元素或同位素监测增强的风化具有影响,因为在可交换池朝着新的平衡发展的过程中,溶解速率和通量将被低估。通过与可交换池的交换,传输下核显着延迟和分离。这一观察结果对使用微量元素或同位素监测增强的风化具有影响,因为在可交换池朝着新的平衡发展的过程中,溶解速率和通量将被低估。通过与可交换池的交换,传输下核显着延迟和分离。这一观察结果对使用微量元素或同位素监测增强的风化具有影响,因为在可交换池朝着新的平衡发展的过程中,溶解速率和通量将被低估。
更新日期:2021-01-01
down
wechat
bug