当前位置: X-MOL 学术Prog. Aerosp. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A review of gas-surface interaction models for orbital aerodynamics applications
Progress in Aerospace Sciences ( IF 11.5 ) Pub Date : 2020-11-01 , DOI: 10.1016/j.paerosci.2020.100675
Sabrina Livadiotti , Nicholas H. Crisp , Peter C.E. Roberts , Stephen D. Worrall , Vitor T.A. Oiko , Steve Edmondson , Sarah J. Haigh , Claire Huyton , Katharine L. Smith , Luciana A. Sinpetru , Brandon E.A. Holmes , Jonathan Becedas , Rosa María Domínguez , Valentín Cañas , Simon Christensen , Anders Mølgaard , Jens Nielsen , Morten Bisgaard , Yung-An Chan , Georg H. Herdrich , Francesco Romano , Stefanos Fasoulas , Constantin Traub , Daniel Garcia-Almiñana , Silvia Rodriguez-Donaire , Miquel Sureda , Dhiren Kataria , Badia Belkouchi , Alexis Conte , Jose Santiago Perez , Rachel Villain , Ron Outlaw

Renewed interest in Very Low Earth Orbits (VLEO) - i.e. altitudes below 450 km - has led to an increased demand for accurate environment characterisation and aerodynamic force prediction. While the former requires knowledge of the mechanisms that drive density variations in the thermosphere, the latter also depends on the interactions between the gas-particles in the residual atmosphere and the surfaces exposed to the flow. The determination of the aerodynamic coefficients is hindered by the numerous uncertainties that characterise the physical processes occurring at the exposed surfaces. Several models have been produced over the last 60 years with the intent of combining accuracy with relatively simple implementations. In this paper the most popular models have been selected and reviewed using as discriminating factors relevance with regards to orbital aerodynamics applications and theoretical agreement with gas-beam experimental data. More sophisticated models were neglected, since their increased accuracy is generally accompanied by a substantial increase in computation times which is likely to be unsuitable for most space engineering applications. For the sake of clarity, a distinction was introduced between physical and scattering kernel theory based gas-surface interaction models. The physical model category comprises the Hard Cube model, the Soft Cube model and the Washboard model, while the scattering kernel family consists of the Maxwell model, the Nocilla-Hurlbut-Sherman model and the Cercignani-Lampis-Lord model. Limits and assets of each model have been discussed with regards to the context of this paper. Wherever possible, comments have been provided to help the reader to identify possible future challenges for gas-surface interaction science with regards to orbital aerodynamic applications.

中文翻译:

轨道空气动力学应用的气体-表面相互作用模型综述

对极低地球轨道 (VLEO)(即高度低于 450 公里)的重新关注导致对准确环境特征和空气动力预测的需求增加。虽然前者需要了解驱动热层密度变化的机制,但后者还取决于残余大气中的气体粒子与暴露于流动的表面之间的相互作用。空气动力学系数的确定受到许多不确定性的阻碍,这些不确定性表征了在暴露表面发生的物理过程。在过去的 60 年中,为了将准确性与相对简单的实现相结合,已经产生了几种模型。在本文中,最流行的模型已被选择和审查,并将其用作与轨道空气动力学应用相关的判别因素以及与气体束实验数据的理论一致性。更复杂的模型被忽略了,因为它们增加的精度通常伴随着计算时间的大量增加,这可能不适合大多数空间工程应用。为了清楚起见,引入了基于物理和散射核理论的气体-表面相互作用模型之间的区别。物理模型类别包括Hard Cube模型、Soft Cube模型和Washboard模型,而散射核家族包括Maxwell模型、Nocilla-Hurlbut-Sherman模型和Cercignani-Lampis-Lord模型。已经在本文的上下文中讨论了每个模型的限制和资产。在可能的情况下,已提供评论以帮助读者确定气体-表面相互作用科学在轨道空气动力学应用方面可能面临的未来挑战。
更新日期:2020-11-01
down
wechat
bug