当前位置: X-MOL 学术Chem. Eng. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Hierarchical TiO2 microspheres with enlarged lattice spacing for rapid and ultrastable sodium storage
Chemical Engineering Science ( IF 4.1 ) Pub Date : 2021-02-01 , DOI: 10.1016/j.ces.2020.116298
Nan Jiang , Yanjie Hu , Hao Jiang , Chunzhong Li

Abstract Intercalation-type TiO2 anode materials have garnered extensive interest for use in Na-ion batteries owing to their low cost and excellent stability. However, such materials are limited by their unsatisfactory specific capacity, particularly at high rates. Herein, we demonstrated the synthesis of hierarchical anatase TiO2 microspheres with enlarged lattice spacings using a simple salt template-assisted spray pyrolysis technique. The broad lattice distance can not only promote ionic transfer but also reduce the band gap with locally enhanced differential charge density, according to density functional theory calculations. Consequently, the resultant sample exhibited reversible specific capacities as high as 362 and 141.8 mAh g-1 at 50 and 5 A g-1, respectively. Impressively, the sample retained specific capacities of 154 mAh g-1 at 1.0 A g-1 after 1600 cycles and of 93.4 mAh g-1 at 5 A g-1 after 7700 cycles. To the best of our knowledge, the Na storage performance of the prepared sample is one of the best among that of TiO2-dominated anode materials. These findings provide new insight into the preparation of novel anode materials for Na-ion batteries with high ionic and electronic conductivities.

中文翻译:

具有扩大的晶格间距的分层 TiO2 微球用于快速和超稳定的钠储存

摘要 插层型TiO2负极材料由于其低成本和优异的稳定性在钠离子电池中的应用引起了广泛的关注。然而,这些材料受限于它们不令人满意的比容量,特别是在高速率下。在此,我们展示了使用简单的盐模板辅助喷雾热解技术合成具有扩大的晶格间距的分级锐钛矿 TiO2 微球。根据密度泛函理论计算,宽晶格距离不仅可以促进离子转移,还可以通过局部增强的微分电荷密度减小带隙。因此,所得样品在 50 A g-1 和 5 A g-1 下分别表现出高达 362 和 141.8 mAh g-1 的可逆比容量。令人印象深刻的是,该样品在 1 时保留了 154 mAh g-1 的比容量。1600 次循环后为 0 A g-1,7700 次循环后 5 A g-1 为 93.4 mAh g-1。据我们所知,所制备样品的钠储存性能是 TiO2 主导的负极材料中最好的之一。这些发现为制备具有高离子和电子电导率的钠离子电池的新型负极材料提供了新的见解。
更新日期:2021-02-01
down
wechat
bug