当前位置: X-MOL 学术J. Vib. Control › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electricity-structure-fluid coupled modelling and experiment of underwater flexible structure with partially distributed macro fiber composites
Journal of Vibration and Control ( IF 2.3 ) Pub Date : 2020-11-30 , DOI: 10.1177/1077546320976917
Junqiang Lou 1, 2 , Tehuan Chen 1 , Yiling Yang 1 , Chao Xu 2 , Hairong Chen 1 , Jianqiang Ma 1 , Yuguo Cui 1 , Guoping Li 1
Affiliation  

Dynamic oscillating behavior of the flexible structure immerged in viscous fluids has attracted growing attention and been widely used in various practical applications. A general electricity-structure-fluid coupled model for the forced dynamic responses of a cantilever immersed in fluids, with partially distributed macro fiber composite, is proposed in this paper. Based on the classical Euler–Bernoulli beam theory, the first mass-normalized mode shape of the cantilever with partially bonded macro fiber composite is determined using assumed mode method. The attachment of the macro fiber composite actuators stiffens the macro fiber composite-bonded portion of the cantilever. The established mode shape matches perfectly with experimental results. Considering the macro fiber composite actuator as a set of representative elements connected in parallel, the internally actuation moment provided by the macro fiber composite actuators is obtained. The hydrodynamic load caused by the surrounding fluids, decomposed into the added mass and hydrodynamic damping parts, is also added to the theoretical model in the frequency-domain form. The predicted in-air and underwater dynamic behaviors of the flexible beam are consistent with the experimental results at different auction levels. Thus, the obtained general electricity-structure-fluid coupled model can be used to predict the forced dynamic responses of flexible structure with partially bonded actuators immersed in fluids.



中文翻译:

部分分布的大纤维复合材料水下柔性结构的电-液-流耦合建模与实验

浸入粘性流体中的柔性结构的动态振荡行为已引起越来越多的关注,并已广泛用于各种实际应用中。提出了一种具有部分分布的宏纤维复合材料的悬臂在流体中的强迫动力响应的电-液-流耦合模型。基于经典的欧拉-伯努利梁理论,采用假定模态方法确定了具有部分粘结的宏纤维复合材料的悬臂的第一个质量归一化模态形状。大纤维复合材料致动器的附接使悬臂的与大纤维复合材料粘合的部分变硬。建立的模式形状与实验结果完美匹配。将宏观纤维复合材料致动器视为一组并联的代表性元件,获得由宏纤维复合致动器提供的内部致动力矩。由周围流体引起的流体动力负载,分解为附加质量和流体动力阻尼部分,也以频域形式添加到理论模型中。柔性梁在空中和水下的动态预测行为与不同拍卖水平的实验结果一致。因此,所获得的一般的电-结构-流体耦合模型可用于预测将部分粘结的执行器浸入流体中的柔性结构的强制动力响应。也以频域形式添加到理论模型中。柔性梁在空中和水下的动态行为预测与不同拍卖水平下的实验结果一致。因此,所获得的一般的电-结构-流体耦合模型可用于预测将部分粘结的执行器浸入流体中的柔性结构的强制动力响应。也以频域形式添加到理论模型中。柔性梁在空中和水下的动态预测行为与不同拍卖水平的实验结果一致。因此,所获得的一般的电-结构-流体耦合模型可用于预测将部分粘结的执行器浸入流体中的柔性结构的强制动力响应。

更新日期:2020-12-01
down
wechat
bug