当前位置: X-MOL 学术Micromachines › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Thermal Impedance Characterization Using Optical Measurement Assisted by Multi-Physics Simulation for Multi-Chip SiC MOSFET Module
Micromachines ( IF 3.0 ) Pub Date : 2020-11-30 , DOI: 10.3390/mi11121060
Min-Ki Kim , Sang Won Yoon

In this paper, an approach to determine the thermal impedance of a multi-chip silicon carbide (SiC) power module is proposed, by fusing optical measurement and multi-physics simulations. The tested power module consists of four parallel SiC metal-oxide semiconductor field-effect transistors (MOSFETs) and four parallel SiC Schottky barrier diodes. This study mainly relies on junction temperature measurements performed using fiber optic temperature sensors instead of temperature-sensitive electrical parameters (TESPs). However, the fiber optics provide a relatively slow response compared to other available TSEP measurement methods and cannot detect fast responses. Therefore, the region corresponding to undetected signals is estimated via multi-physics simulations of the power module. This method provides a compensated cooling curve. We analyze the thermal resistance using network identification by deconvolution (NID). The estimated thermal resistance is compared to that obtained via a conventional method, and the difference is 3.8%. The proposed fusion method is accurate and reliable and does not require additional circuits or calibrations.

中文翻译:

基于多物理场仿真的光学测量辅助热阻特性的多芯片SiC MOSFET模块

本文提出了一种通过融合光学测量和多物理场仿真来确定多芯片碳化硅(SiC)电源模块热阻的方法。经过测试的电源模块由四个并联的SiC金属氧化物半导体场效应晶体管(MOSFET)和四个并联的SiC肖特基势垒二极管组成。这项研究主要依赖于使用光纤温度传感器而不是对温度敏感的电参数(TESP)进行结温测量。但是,与其他可用的TSEP测量方法相比,光纤提供的响应相对较慢,并且无法检测到快速响应。因此,通过电源模块的多物理场仿真可以估算出与未检测到的信号相对应的区域。该方法提供了补偿的冷却曲线。我们使用通过反卷积(NID)进行网络识别来分析热阻。将估计的热阻与通过常规方法获得的热阻进行比较,相差3.8%。所提出的融合方法是准确和可靠的,并且不需要额外的电路或校准。
更新日期:2020-12-01
down
wechat
bug