当前位置: X-MOL 学术Mater. Res. Express › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Investigation of the microstructure and mechanical performance of bimetal components fabricated using CMT-based wire arc additive manufacturing
Materials Research Express ( IF 1.8 ) Pub Date : 2020-11-30 , DOI: 10.1088/2053-1591/abcb4b
Shaohua Han , Zhongzhong Zhang , Zhisen Liu , Hong Zhang , Dingqi Xue

Traditionally, wear-resistant components are manufactured by cladding hard facing material on the base metal. This production process is typically complicated, expensive, and time-consuming. This study proposes a method of fabricating components with high wear resistance requirements utilizing cold metal transfer based wire and arc additive manufacturing with hard facing welding wire as the consumable material. Thin-walled and block components were manufactured by depositing a combination of a low alloy steel, ER80S-G, and a hard facing material, MF6–55GP. Microstructure characterization and mechanical properties (hardness, tensile and Block-on-Ring wear test) were performed. The results revealed that the ER80S-G/MF6–55GP bimetal components were able to be fused with no detectable defects near the border. As the deposited height was increased, the residual stress also increased; this internal residual stress combined with the external tensile load lead to a very low tensile strength of 447.7924.32 MPa of the ER80S-G/MF6-55GP/ER80S-G sandwich structure. The microstructures, constituent phases, and hardness distributions differ greatly among the layers due to their different thermal histories. The wear weight loss varies as the load condition changes for both the MF6-55G and Cr12MoV steels. Compared to Cr12MoV, MF6-55GP weld metal exhibits better wear resistance at higher loads in dry sliding wear tests.



中文翻译:

使用基于 CMT 的电弧增材制造制造的双金属部件的微观结构和机械性能研究

传统上,耐磨部件是通过在基底金属上包覆硬面材料来制造的。这种生产过程通常复杂、昂贵且耗时。本研究提出了一种制造具有高耐磨性要求的部件的方法,该方法利用基于冷金属转移的焊丝和电弧增材制造,以硬面焊丝作为消耗材料。薄壁和块状部件是通过沉积低合金钢 ER80S-G 和硬面材料 MF6-55GP 的组合制造的。进行了微观结构表征和机械性能(硬度、拉伸和块对环磨损测试)。结果表明,ER80S-G/MF6-55GP 双金属元件能够熔合,在边界附近没有可检测到的缺陷。随着沉积高度的增加,残余应力也增加;这种内部残余应力与外部拉伸载荷相结合,导致 ER80S-G/MF6-55GP/ER80S-G 夹层结构的拉伸强度非常低,仅为 447.7924.32 MPa。由于不同的热历程,各层之间的微观结构、组成相和硬度分布差异很大。MF6-55G 和 Cr12MoV 钢的磨损重量损失随着载荷条件的变化而变化。与 Cr12MoV 相比,MF6-55GP 焊缝金属在干滑动磨损试验中在较高载荷下表现出更好的耐磨性。由于热历史不同,各层之间的硬度分布差异很大。MF6-55G 和 Cr12MoV 钢的磨损重量损失随着载荷条件的变化而变化。与 Cr12MoV 相比,MF6-55GP 焊缝金属在干滑动磨损试验中在较高载荷下表现出更好的耐磨性。由于热历史不同,各层之间的硬度分布差异很大。MF6-55G 和 Cr12MoV 钢的磨损重量损失随着载荷条件的变化而变化。与 Cr12MoV 相比,MF6-55GP 焊缝金属在干滑动磨损试验中在较高载荷下表现出更好的耐磨性。

更新日期:2020-11-30
down
wechat
bug