当前位置: X-MOL 学术J. Phys. D: Appl. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Impact of geometric factors of roughness on the dewetting dynamics of a liquid film in the Wenzel state
Journal of Physics D: Applied Physics ( IF 3.1 ) Pub Date : 2020-11-28 , DOI: 10.1088/1361-6463/abc27d
Lei Wang 1, 2, 3 , Xiang Wang 1, 2, 3 , Ze-Rui Peng 4, 5
Affiliation  

An axisymmetric two-phase lattice Boltzmann method is adopted to simulate the dewetting dynamics of the liquid film on a substrate fabricated with different types of roughness: pillar-type, nail-type and mushroom-type. The liquid film remains in the Wenzel or half-Wenzel state. The dewetting of the liquid film occurs after generating an initial dry spot on the substrate and forming a contact line between the liquid film, gases and the substrate. The dewetting is characterized by the continuous size growth of the contact line’s radius. The effect of the geometric factors of the roughnesses on the dewetting dynamics is analyzed in detail. For the pillar-type roughness, three dewetting modes, named ‘no residual,’ ‘part residual’ and ‘full residual’, are identified, and a mode map that depends on the geometrical factors is given. For the nail-type roughness, the dewetting process is found to be clearly restrained. For the mushroom-type roughness, only the ‘full residual’ mode is found, and the depth of the grooves hardly affects the dewetting speed, if the liquid film remains in the Wenzel state; but if it remains in the half-Wenzel state, the liquids would be brought out completely from the grooves and thus result in a faster dewetting speed under smaller penetration of the liquid film. The results indicate that the different geometric elements of the roughness could affect the dewetting speed to different degrees. Determining how the structured roughness affects the dewetting speed can help the industry control the dewetting process of the liquid film.



中文翻译:

粗糙度几何因素对Wenzel状态下液膜反润湿动力学的影响

采用轴对称的两相晶格玻尔兹曼方法来模拟液膜在具有不同粗糙度(柱型,钉子型和蘑菇型)的基底上的去湿动力学。液膜保持在Wenzel或半Wenzel状态。在基板上产生初始干点并在液膜,气体和基板之间形成接触线之后,发生液膜的去湿。反润湿的特征在于接触线半径的连续尺寸增长。详细分析了粗糙度的几何因素对去湿动力学的影响。对于柱型粗糙度,确定了三种去湿模式,分别称为“无残差”,“部分残差”和“全残差”,并给出了取决于几何因素的模式图。对于指甲型粗糙度,发现明显抑制了去湿过程。对于蘑菇型粗糙度,如果液膜保持在Wenzel状态,则只能找到“完全残留”模式,并且凹槽的深度几乎不会影响去湿速度;反之,但是如果它保持在半Wenzel状态,则液体将完全从凹槽中带出,从而在较小的液膜渗透下导致更快的去湿速度。结果表明,粗糙度的不同几何元素可能在不同程度上影响去湿速度。确定结构化粗糙度如何影响去湿速度可以帮助工业控制液膜的去湿过程。如果液膜保持在温泽尔状态,则仅发现“完全残留”模式,并且凹槽的深度几乎不会影响去湿速度。但是如果它保持在半Wenzel状态,则液体将完全从凹槽中带出,从而在较小的液膜渗透下导致更快的去湿速度。结果表明,粗糙度的不同几何元素可能在不同程度上影响去湿速度。确定结构化粗糙度如何影响去湿速度可以帮助工业控制液膜的去湿过程。如果液膜保持在温泽尔状态,则仅发现“完全残留”模式,并且凹槽的深度几乎不会影响去湿速度。但是如果它保持在半Wenzel状态,则液体将完全从凹槽中带出,从而在较小的液膜渗透下导致更快的去湿速度。结果表明,粗糙度的不同几何元素可能在不同程度上影响去湿速度。确定结构化粗糙度如何影响去湿速度可以帮助工业控制液膜的去湿过程。液体会从凹槽中完全排出,从而在较小的液膜渗透率下产生更快的去湿速度。结果表明,粗糙度的不同几何元素可能在不同程度上影响去湿速度。确定结构化粗糙度如何影响去湿速度可以帮助工业控制液膜的去湿过程。液体会从凹槽中完全排出,从而在较小的液膜渗透率下产生更快的去湿速度。结果表明,粗糙度的不同几何元素可能在不同程度上影响去湿速度。确定结构化粗糙度如何影响去湿速度可以帮助工业控制液膜的去湿过程。

更新日期:2020-11-28
down
wechat
bug