当前位置: X-MOL 学术J. Am. Chem. Soc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dynamic Evolution of a Cathode Interphase Layer at the Surface of LiNi0.5Co0.2Mn0.3O2 in Quasi-Solid-State Lithium Batteries
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2020-11-29 , DOI: 10.1021/jacs.0c09602
Hui-Juan Guo 1, 2 , Huai-Xiang Wang 2, 3 , Yu-Jie Guo 1, 2 , Gui-Xian Liu 1, 2 , Jing Wan 1, 2 , Yue-Xian Song 1, 2 , Xin-An Yang 2, 3 , Fei-Fei Jia 4 , Fu-Yi Wang 2, 4 , Yu-Guo Guo 1, 2, 5 , Rui Wen 1, 2, 5 , Li-Jun Wan 1, 2
Affiliation  

Intensive understanding of the surface mechanism of cathode materials, such as structural evolution and chemical and mechanical stability upon charging/discharging, is crucial to design advanced solid-state lithium batteries (SSLBs) of tomorrow. Here, via in situ atomic force microscopy monitoring, we explore the dynamic evolution process at the surface of LiNi0.5Co0.2Mn0.3O2 cathode particles inside a working SSLB. The dynamic formation process of the cathode interphase layer, with an inorganic-organic hybrid structure, was real-time imaged, as well as the evolution of its mechanical property by in situ scanning of the Derjaguin-Muller-Toporov modulus. Moreover, different components of the cathode interphase layer, such as LiF, Li2CO3, and specific organic species, were identified in detailat different stages of cycling, which can be directly correlated with the impedance buildup of the battery. In addition, the transition metal migration and the formation of new phases can further exacerbate the degradation of the SSLB. A relatively stable cathode interphase is key to improving the performance of SSLBs. Our findings provide deep insights into the dynamic evolution of surface morphology, chemical components and mechanical properties of the cathode interphase layer, which are pivotal for the performance optimization of SSLBs.

中文翻译:

准固态锂电池LiNi0.5Co0.2Mn0.3O2表面正极中间相层的动态演化

深入了解正极材料的表面机制,例如结构演变以及充放电时的化学和机械稳定性,对于设计未来的先进固态锂电池 (SSLB) 至关重要。在这里,通过原位原子力显微镜监测,我们探索了工作 SSLB 内 LiNi0.5Co0.2Mn0.3O2 阴极颗粒表面的动态演化过程。具有无机-有机杂化结构的阴极界面层的动态形成过程被实时成像,并通过 Derjaguin-Muller-Toporov 模量的原位扫描及其力学性能的演变进行了成像。此外,在循环的不同阶段详细鉴定了正极中间相层的不同成分,如 LiF、Li2CO3 和特定的有机物种,这可以与电池的阻抗建立直接相关。此外,过渡金属迁移和新相的形成会进一步加剧 SSLB 的降解。相对稳定的阴极界面是提高 SSLB 性能的关键。我们的发现为阴极界面层的表面形态、化学成分和机械性能的动态演变提供了深入的见解,这些对于 SSLB 的性能优化至关重要。
更新日期:2020-11-29
down
wechat
bug