当前位置: X-MOL 学术Phys. Rev. C › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Covariant density functional theory input for r -process simulations in actinides and superheavy nuclei: The ground state and fission properties
Physical Review C ( IF 3.2 ) Pub Date : 2020-11-30 , DOI: 10.1103/physrevc.102.054330
A. Taninah , S. E. Agbemava , A. V. Afanasjev

The systematic investigation of the ground state and fission properties of even-even actinides and superheavy nuclei with $Z=90-120$ from the two-proton up to two-neutron drip lines with proper assessment of systematic theoretical uncertainties has been performed for the first time in the framework of covariant density functional theory (CDFT). These results provide a necessary theoretical input for the r-process modeling in heavy nuclei and, in particular, for the study of fission recycling. Four state-of-the-art globally tested covariant energy density functionals (CEDFs), namely, DD-PC1, DD-ME2, NL3* and PC-PK1, representing the major classes of the CDFT models are employed in the present study. Ground state deformations, binding energies, two neutron separation energies, $\alpha$-decay $Q_{\alpha}$ values and half-lives and the heights of fission barriers have been calculated for all these nuclei. Theoretical uncertainties in these physical observables and their evolution as a function of proton and neutron numbers have been quantified and their major sources have been identified. Spherical shell closures at $Z=120$, $N=184$ and $N=258$ and the structure of the single-particle (especially, high-$j$) states in their vicinities as well as nuclear matter properties of employed CEDFs are two major factors contributing into theoretical uncertainties. However, different physical observables are affected in a different way by these two factors. For example, theoretical uncertainties in calculated ground state deformations are affected mostly by former factor, while theoretical uncertainties in fission barriers depend on both of these factors.

中文翻译:

用于锕系元素和超重核中 r 过程模拟的协变密度泛函理论输入:基态和裂变特性

从双质子到双中子滴线,对偶偶锕系元素和超重核的基态和裂变特性进行了系统研究,其中 $Z=90-120$ 从两个质子到两个中子滴落线,并适当评估了系统理论不确定性。第一次在协变密度泛函理论(CDFT)的框架内。这些结果为重核中的 r 过程建模,特别是裂变循环的研究提供了必要的理论输入。本研究采用了四种最先进的全球测试协变能量密度函数 (CEDF),即 DD-PC1、DD-ME2、NL3* 和 PC-PK1,它们代表了 CDFT 模型的主要类别。基态变形、结合能、两个中子分离能、$\alpha$-decay $Q_{\alpha}$ 值和半衰期以及所有这些原子核的裂变势垒高度都已计算出来。这些物理观测的理论不确定性及其作为质子和中子数的函数的演变已经被量化,并且它们的主要来源已经被确定。$Z=120$、$N=184$ 和 $N=258$ 处的球壳闭合以及附近的单粒子(尤其是高 $j$)状态的结构以及所采用的核物质特性CEDF 是导致理论不确定性的两个主要因素。然而,这两个因素以不同的方式影响不同的物理可观察量。例如,计算基态变形的理论不确定性主要受前一个因素的影响,
更新日期:2020-11-30
down
wechat
bug