当前位置: X-MOL 学术Nat. Commun. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Spatially expandable fiber-based probes as a multifunctional deep brain interface
Nature Communications ( IF 14.7 ) Pub Date : 2020-11-30 , DOI: 10.1038/s41467-020-19946-9
Shan Jiang 1 , Dipan C Patel 2 , Jongwoon Kim 1 , Shuo Yang 1 , William A Mills 3, 4 , Yujing Zhang 1 , Kaiwen Wang 5 , Ziang Feng 1 , Sujith Vijayan 4 , Wenjun Cai 5 , Anbo Wang 1 , Yuanyuan Guo 6 , Ian F Kimbrough 4 , Harald Sontheimer 2, 3, 4 , Xiaoting Jia 1
Affiliation  

Understanding the cytoarchitecture and wiring of the brain requires improved methods to record and stimulate large groups of neurons with cellular specificity. This requires miniaturized neural interfaces that integrate into brain tissue without altering its properties. Existing neural interface technologies have been shown to provide high-resolution electrophysiological recording with high signal-to-noise ratio. However, with single implantation, the physical properties of these devices limit their access to one, small brain region. To overcome this limitation, we developed a platform that provides three-dimensional coverage of brain tissue through multisite multifunctional fiber-based neural probes guided in a helical scaffold. Chronic recordings from the spatially expandable fiber probes demonstrate the ability of these fiber probes capturing brain activities with a single-unit resolution for long observation times. Furthermore, using Thy1-ChR2-YFP mice we demonstrate the application of our probes in simultaneous recording and optical/chemical modulation of brain activities across distant regions. Similarly, varying electrographic brain activities from different brain regions were detected by our customizable probes in a mouse model of epilepsy, suggesting the potential of using these probes for the investigation of brain disorders such as epilepsy. Ultimately, this technique enables three-dimensional manipulation and mapping of brain activities across distant regions in the deep brain with minimal tissue damage, which can bring new insights for deciphering complex brain functions and dynamics in the near future.



中文翻译:

空间可扩展的基于光纤的探针作为多功能深脑接口

了解大脑的细胞结构和布线需要改进的方法来记录和刺激具有细胞特异性的大量神经元。这需要在不改变其特性的情况下集成到脑组织中的小型化神经接口。现有的神经接口技术已被证明可以提供具有高信噪比的高分辨率电生理记录。然而,通过单次植入,这些设备的物理特性限制了它们进入一个小的大脑区域。为了克服这一限制,我们开发了一个平台,该平台通过在螺旋支架中引导的多位点多功能基于纤维的神经探针提供脑组织的三维覆盖。来自空间可扩展光纤探头的慢性记录证明了这些光纤探头在长时间观察中以单单位分辨率捕获大脑活动的能力。此外,使用Thy1-ChR2-YFP小鼠,我们展示了我们的探针在远距离区域大脑活动的同步记录和光学/化学调制中的应用。同样,我们的可定制探针在癫痫小鼠模型中检测到来自不同大脑区域的不同脑电活动,这表明使用这些探针研究癫痫等脑部疾病的潜力。最终,该技术能够以最小的组织损伤对大脑深部远处区域的大脑活动进行三维操作和映射,这可以为在不久的将来破译复杂的大脑功能和动力学带来新的见解。

更新日期:2020-12-01
down
wechat
bug