当前位置: X-MOL 学术J. Biomater. Sci. Polym. Ed. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Multi-layer PDMS films having antifouling property for biomedical applications
Journal of Biomaterials Science, Polymer Edition ( IF 3.6 ) Pub Date : 2020-12-21 , DOI: 10.1080/09205063.2020.1856300
M Mousavi 1, 2 , H Ghaleh 3 , K Jalili 1, 2 , F Abbasi 1, 2
Affiliation  

Abstract

Poly(dimethylsiloxane) (PDMS) elastomer is now a well-known material for packaging implantable biomedical micro-devices owing to unique bulk properties such as biocompatibility, low toxicity, excellent rheological properties, good flexibility, and mechanical stability. Despite the desirable bulk characteristics, PDMS is generally regarded as a high-flux material for oxygen and water vapor to penetrate compared with other polymeric barrier materials, which is related to the defect-induced penetration through the packaging coating prepared by the traditional deposition techniques. Besides, its hydrophobic nature causes serious fouling problems and limits the practical application of PDMS-based devices. In this work, the performance of silicone thin films as a packaging layer was improved by the fabrication of the roller-casted multiple thin layers to minimize a defect-induced failure. To confer hydrophilicity and cell fouling resistance, high-density and well-defined poly(oligo(ethylene glycol) methacrylate) (POEGMA) brushes were tethered via the surface-initiated atom transfer radical polymerization (SI-ATRP) technique on the roller-casted multiple thin PDMS layers. The characteristics of fabricated substrates were determined by static water contact angle measurement, X-ray photoelectron spectroscopy, and attenuated total reflection-Fourier transform infrared spectroscopy. In vitro cell behavior of POEGMA-grafted PDMS substrates was evaluated to examine cell-fouling resistance.



中文翻译:

用于生物医学应用的具有防污性能的多层 PDMS 薄膜

摘要

聚(二甲基硅氧烷)(PDMS)弹性体由于其独特的体积特性,如生物相容性、低毒性、优异的流变特性、良好的柔韧性和机械稳定性,现已成为一种众所周知的用于包装可植入生物医学微器件的材料。尽管具有理想的体积特性,但与其他聚合物阻隔材料相比,PDMS 通常被认为是氧气和水蒸气渗透的高通量材料,这与通过传统沉积技术制备的包装涂层的缺陷诱导渗透有关。此外,其疏水性会导致严重的污染问题并限制了基于 PDMS 的设备的实际应用。在这项工作中,有机硅薄膜作为包装层的性能通过辊铸多层薄层的制造得到改善,以最大限度地减少缺陷引起的故障。为了赋予亲水性和细胞抗污性,高密度和明确定义的聚(低聚(乙二醇)甲基丙烯酸酯)(POEGMA)刷子通过表面引发的原子转移自由基聚合(SI-ATRP)技术拴在辊铸件上多个薄的 PDMS 层。通过静态水接触角测量、X 射线光电子能谱和衰减全反射-傅立叶变换红外光谱确定制造基板的特性。高密度和明确定义的聚(低聚(乙二醇)甲基丙烯酸酯)(POEGMA)刷通过表面引发的原子转移自由基聚合(SI-ATRP)技术连接在滚铸的多个薄 PDMS 层上。通过静态水接触角测量、X 射线光电子能谱和衰减全反射-傅立叶变换红外光谱确定制造基板的特性。高密度和明确定义的聚(低聚(乙二醇)甲基丙烯酸酯)(POEGMA)刷子通过表面引发的原子转移自由基聚合(SI-ATRP)技术束缚在滚铸的多个薄 PDMS 层上。通过静态水接触角测量、X 射线光电子能谱和衰减全反射-傅立叶变换红外光谱确定制造基板的特性。评估了 POEGMA 接枝的 PDMS 底物的体外细胞行为,以检查细胞抗污染性。

更新日期:2020-12-21
down
wechat
bug