当前位置: X-MOL 学术Am. J. Bot. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Flora of the hot deserts: emerging patterns from phylogeny‐based diversity studies
American Journal of Botany ( IF 2.4 ) Pub Date : 2020-10-28 , DOI: 10.1002/ajb2.1555
Rosa A. Scherson 1 , Federico Luebert 1 , Patricio Pliscoff 2, 3 , Taryn Fuentes‐Castillo 2
Affiliation  

Relatively recent increases in molecular and geographic data for many taxa in different areas of the world have provided scientists with tools to evaluate biodiversity using evolutionary or phylogeny‐based indices (reviewed by Laffan, 2018). These measures provide quantitative estimates of the portion of the tree of life contained in a taxon or community, aiming to answer the question of what percentage of the phylogeny would be lost if that taxon or community is not conserved (Faith, 1992; Purvis et. al., 2000). One of the most widely used phylogenetic indices is phylogenetic diversity (PD), which measures the evolutionary history captured by a set of species (or any biodiversity unit) on the tree of life (Faith, 1992). A higher PD value can represent either a set of taxa that represent longer branches than expected and/or are overdispersed in the phylogeny (Fig. 1A, B). Use of PD was proposed more than two decades ago (Faith, 1992) as a method for finding sets of taxa that could be highlighted as priorities for conservation and has recently been proposed as a biodiversity metric by several international conservation organizations (see IPBES, 2019). For example, the International Union for the Conservation of Nature (IUCN) has recently established a Phylogenetic Diversity Task Force (https://www.iucn.org/commissions/ssc‐groups/disciplinary‐groups/phylogenetic‐diversity‐task‐force), a global expert group, aimed at incorporating PD into practical conservation strategies.

image
Figure 1
Open in figure viewerPowerPoint
Upper panel (A, B): Theoretical example to illustrate the calculation of PD. The phylogenetic tree represents the hypothetical relationship among species A–G. Branch lengths indicate amount of evolution (e.g., molecular divergence) of each taxon (numbers above branches). The two panels represent taxa present in two areas (orange branches), and each area has three species. The area in panel A contains species A, C, and D, while the area in panel B contains species B, F, and G. Phylogenetic diversity (PD) is calculated by summing the branch lengths of the taxa present in each area. An area with more taxa in short branches and/or clustered in the tree of life (A) will have lower PD than areas in which taxa are in long branches and/or spread in the tree of life (B). Lower panel (C–E): Phylogenetic diversity and location of hot deserts in Chile (modified with permission from Scherson et al. [2017],

copyright

license from Elsevier via

Copyright

Clearance Center’s RightsLink®), Australia (modified with permission from Thornhill et al. [2016],

copyright

license from Wiley via

Copyright

Clearance Center’s RightsLink®) and California (modified with permission from Thornhill et al. [2017], available under Creative Commons license http://creativecommons.org/licenses/by/4.0/). The PD is indicated with a color code: the darker the grid cell, the higher the PD for that area. Desert areas are depicted as black polygons. The percentage of phylogenetic neoendemisms within each desert with respect to the total is indicated for each map.

Several studies of geographic patterns of PD have been conducted for the floras of different ecoregions (for a review, see Scherson et al., 2018), generally showing that relatively more humid regions (temperate and tropical) tend to concentrate more PD than arid zones. Coincident with the concentration of PD, plant diversity in hot deserts is lower than the diversity in more humid regions when measured in terms of species richness (Barthlott et al., 2005), and humid regions tend to have lower extinction rates leading to higher species accumulation over time. Greater resource availability contributes to the increased species richness in humid compared to arid zones (Worm and Tittensor, 2018).

Tropical regions in the world constitute most of the biodiversity hotspots (Myers et al., 2000), and only 1.82% of hotspots correspond to arid zones (Olson et al., 2001), leaving deserts underprioritized in national and international biodiversity conservation strategies. However, hot deserts are areas of high endemism (meaning that their taxa are unique and geographically restricted) and vulnerability. In addition, plant species in these areas are adapted to dry conditions, a relevant attribute when considering their evolutionary, ecological, and economic potential in the face of global change (Ward, 2016).



中文翻译:

炎热沙漠的植物区系:基于系统发育多样性研究的新兴模式

相对而言,世界不同地区许多生物分类的分子和地理数据相对较新增加,为科学家提供了使用基于进化或基于系统进化论的指数评估生物多样性的工具(Laffan综述,2018年)。这些措施提供了对分类单元或群落中生命树的部分的定量估计,旨在回答以下问题:如果该分类单元或群落不保守,将损失多少系统发育百分比(Faith,1992 ; Purvis等。等,2000)。最广泛使用的系统发育指标之一是系统发育多样性(PD),它衡量生命树上一组物种(或任何生物多样性单位)捕获的进化历史(Faith,1992年))。较高的PD值可以代表一组比预期更长的分支和/或在系统发育中过度分散的分类单元(图1A,B)。二十多年前(Faith,1992)提出使用PD作为寻找分类单元集的一种方法,可以将其作为保护的重点,最近已被多个国际保护组织提出作为生物多样性指标(见IPBES,2019年))。例如,国际自然保护联盟(IUCN)最近成立了系统发育多样性工作组(https://www.iucn.org/commissions/ssc-groups/disciplinary-groups/phylogenetic-diversity-task-force ),这是一个全球专家小组,旨在将PD纳入实际的保护策略。

图片
图1
在图形查看器中打开微软幻灯片软件
上图(A,B):用于计算PD的理论示例。系统发育树代表了物种A–G之间的假设关系。分支长度指示每个分类群的进化量(例如,分子分歧)(分支上方的数字)。这两个面板代表存在于两个区域(橙色分支)中的分类单元,每个区域具有三个物种。面板A中的区域包含物种A,C和D,而面板B中的区域包含物种B,F和G。系统发育多样性(PD)是通过对每个区域中存在的分类单元的分支长度求和而得出的。与在生命树中长分类和/或散布的生物分类区域相比,在生命树中短分类和/或聚集的生物分类区域更大的区域将具有较低的PD(B)。下面板(C–E):2017 ],

版权

Elsevier的许可证通过

版权

结算中心的RightsLink ®),澳大利亚(从特霍西尔等许可修改。[ 2016 ]

版权

来自Wiley的许可,通过

版权

结算中心的RightsLink ®)和加利福尼亚(修改与特霍西尔等权限。[ 2017年],在Creative Commons可用许可证http://creativecommons.org/licenses/by/4.0/)。PD用颜色代码表示:网格单元越黑,该区域的PD越高。沙漠地区被描绘成黑色的多边形。每个地图都标明了每个沙漠内系统进化新地方病相对于总数的百分比。

已经针对不同生态区域的植物区系进行了PD地理分布的若干研究(综述见Scherson等人,2018),总体上显示相对较干旱的地区(温带和热带)倾向于比干旱地区集中更多的PD 。与局部放电浓度一致的是,从物种丰富度的角度衡量,炎热沙漠中的植物多样性低于较湿润地区的多样性(Barthlott等,2005),并且湿润地区的灭绝率较低,导致物种较高随着时间的推移积累。与干旱地区相比,更多的资源可利用性增加了湿地物种的丰富度(Worm and Tittensor,2018)。

世界上的热带地区构成了生物多样性热点中的大部分(Myers等,2000),只有1.82%的热点对应于干旱区(Olson等,2001),在国家和国际生物多样性保护战略中沙漠没有得到应有的重视。但是,炎热的沙漠是高度流行的地区(这意味着它们的分类群是独特的,并且在地理上受到限制)和脆弱性。此外,这些地区的植物物种适应干旱条件,这是在面对全球变化时考虑其进化,生态和经济潜力时的相关属性(Ward,2016)。

更新日期:2020-12-01
down
wechat
bug