当前位置: X-MOL 学术Surf. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Transient flow of Maxwell Nanofluid Over a Shrinking Surface: Numerical Solutions and Stability Analysis
Surfaces and Interfaces ( IF 5.7 ) Pub Date : 2021-02-01 , DOI: 10.1016/j.surfin.2020.100829
Muhammad Naveed Khan , Naeem Ullah , Sohail Nadeem

Abstract This article explores the theoretical analysis for thermal and mass transport of Maxwell nanofluid along permeable shrinking surface. The thermal and concentration configuration involve heat generation/absorption and chemical reaction in the flow regime. Brownian motion and thermophoresis phenomenon are considered in the mass transport analysis. This physical configuration is translated in terms of nondimensional differential system. A numerical investigation of the governing equations is carried out with Bvp4c technique in MATLAB. Further, it has been found that shrinking and suction at porous surface leads to multiple solutions of the system. The results in terms of line graphs portray that the stronger suction at shrinking surface possess higher heat and mass transfer rate at surface. The heat transfer rate enhances by the larger values of Biot number. Further, the velocity, temperature and mass distribution indicate maximum values at stronger relaxation parameter.

中文翻译:

麦克斯韦纳米流体在收缩表面上的瞬态流动:数值解和稳定性分析

摘要 本文探讨了麦克斯韦纳米流体沿可渗透收缩表面的传热和传质的理论分析。热量和浓缩配置涉及流态中的热量产生/吸收和化学反应。在质量传输分析中考虑了布朗运动和热泳现象。这种物理配置被转化为无量纲微分系统。在 MATLAB 中使用 Bvp4c 技术对控制方程进行了数值研究。此外,已经发现多孔表面处的收缩和抽吸导致系统的多种解。折线图的结果表明,收缩表面的吸力越强,表面的传热传质速率越高。比奥数越大,传热率越高。此外,速度、温度和质量分布在更强的弛豫参数下显示最大值。
更新日期:2021-02-01
down
wechat
bug