当前位置: X-MOL 学术Comput. Fluids › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Direct numerical simulations of turbulent reacting flows with shock waves and stiff chemistry using many-core/GPU acceleration
Computers & Fluids ( IF 2.8 ) Pub Date : 2021-01-01 , DOI: 10.1016/j.compfluid.2020.104787
Swapnil Desai , Yu Jeong Kim , Wonsik Song , Minh Bau Luong , Francisco E. Hernández Pérez , Ramanan Sankaran , Hong G. Im

Abstract Compressible reacting flows may display sharp spatial variation related to shocks, contact discontinuities or reactive zones embedded within relatively smooth regions. The presence of such phenomena emphasizes the relevance of shock-capturing schemes such as the weighted essentially non-oscillatory (WENO) scheme as an essential ingredient of the numerical solver. However, these schemes are complex and have more computational cost than the simple high-order compact or non-compact schemes. In this paper, we present the implementation of a seventh-order, minimally-dissipative mapped WENO (WENO7M) scheme in a newly developed direct numerical simulation (DNS) code called KAUST Adaptive Reactive Flows Solver (KARFS). In order to make efficient use of the computer resources and reduce the solution time, without compromising the resolution requirement, the WENO routines are accelerated via graphics processing unit (GPU) computation. The performance characteristics and scalability of the code are studied using different grid sizes and block decomposition. The performance portability of KARFS is demonstrated on a variety of architectures including NVIDIA Tesla P100 GPUs and NVIDIA Kepler K20X GPUs. In addition, the capability and potential of the newly implemented WENO7M scheme in KARFS to perform DNS of compressible flows is also demonstrated with model problems involving shocks, isotropic turbulence, detonations and flame propagation into a stratified mixture with complex chemical kinetics.

中文翻译:

使用多核/GPU 加速对具有冲击波和刚性化学的湍流反应流进行直接数值模拟

摘要 可压缩反应流可能会表现出与冲击、接触不连续性或嵌入在相对平滑区域内的反应带相关的急剧空间变化。这种现象的存在强调了冲击捕获方案的相关性,例如加权基本非振荡 (WENO) 方案作为数值求解器的基本组成部分。然而,这些方案很复杂,并且比简单的高阶紧致或非紧致方案具有更多的计算成本。在本文中,我们介绍了七阶最小耗散映射 WENO (WENO7M) 方案在新开发的直接数值模拟 (DNS) 代码中的实现,该代码称为 KAUST 自适应反应流求解器 (KARFS)。为了有效利用计算机资源,减少求解时间,在不影响分辨率要求的情况下,WENO 例程通过图形处理单元 (GPU) 计算得到加速。使用不同的网格大小和块分解来研究代码的性能特征和可扩展性。KARFS 的性能可移植性在包括 NVIDIA Tesla P100 GPU 和 NVIDIA Kepler K20X GPU 在内的各种架构上得到了证明。此外,KARFS 中新实施的 WENO7M 方案在执行可压缩流 DNS 方面的能力和潜力也通过涉及冲击、各向同性湍流、爆炸和火焰传播到具有复杂化学动力学的分层混合物的模型问题得到了证明。使用不同的网格大小和块分解来研究代码的性能特征和可扩展性。KARFS 的性能可移植性在包括 NVIDIA Tesla P100 GPU 和 NVIDIA Kepler K20X GPU 在内的各种架构上得到了证明。此外,KARFS 中新实施的 WENO7M 方案在执行可压缩流 DNS 方面的能力和潜力也通过涉及冲击、各向同性湍流、爆炸和火焰传播到具有复杂化学动力学的分层混合物的模型问题得到了证明。使用不同的网格大小和块分解来研究代码的性能特征和可扩展性。KARFS 的性能可移植性在包括 NVIDIA Tesla P100 GPU 和 NVIDIA Kepler K20X GPU 在内的各种架构上得到了证明。此外,KARFS 中新实施的 WENO7M 方案在执行可压缩流 DNS 方面的能力和潜力也通过涉及冲击、各向同性湍流、爆炸和火焰传播到具有复杂化学动力学的分层混合物的模型问题得到了证明。
更新日期:2021-01-01
down
wechat
bug