当前位置: X-MOL 学术Appl. Therm. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Assessing the thermal efficiency of energy tunnels using numerical methods and Taguchi statistical approach
Applied Thermal Engineering ( IF 6.1 ) Pub Date : 2020-11-28 , DOI: 10.1016/j.applthermaleng.2020.116377
Oluwaseun Ogunleye , Rao Martand Singh , Francesco Cecinato

The use of ground source heat pump systems (GSHPs) with tunnels (so-called energy tunnels) to provide space heating and cooling is one of the latest concepts that has recently raised research interest but has not yet been commercially established. This study represents the first attempt to investigate the influence of design parameters on the energy efficiency of a GSHP using an underground tunnel as the energy geostructure. Seven important design parameters, namely absorber fluid diffusivity, concrete diffusivity, pipe thermal conductivity, pipe diameter, length of pipe, pipe spacing and absorber pipe location were considered. The influence of these design parameters on the tunnel thermal efficiency was studied by using an experimentally validated 3-D numerical model and then deploying the Taguchi method to efficiently explore parameters space. The results show that concrete diffusivity and pipe total length are the most influential parameters, followed by the pipe location and diameter, while spacing was found to be the least influential factor. Hence the overall thermal output of an energy tunnel depends largely on the available area for heat exchange and the thermal properties of the tunnel lining. Results also show that within the range of pipe diameter considered, using a larger pipe diameter in energy tunnels is more efficient from the thermal output and pump power requirements. These results can be used as thermal efficiency optimisation guidance for both researchers and practitioners.



中文翻译:

使用数值方法和田口统计方法评估能量隧道的热效率

带有通道(所谓的能量通道)的地源热泵系统(GSHP)的使用提供空间加热和冷却是最近引起研究兴趣但尚未商业化的最新概念之一。这项研究代表了首次尝试研究设计参数对以地下隧道作为能源地质结构的GSHP能源效率的影响。考虑了七个重要的设计参数,即吸收剂的流体扩散率,混凝土的扩散率,管道导热率,管道直径,管道长度,管道间距和吸收器管道位置。通过使用经过实验验证的3-D数值模型研究了这些设计参数对隧道热效率的影响,然后部署了Taguchi方法以有效地探索参数空间。结果表明,混凝土的扩散率和管道总长度是影响最大的参数,其次是管道的位置和直径,而间距是影响最小的因素。因此,能量隧道的总热输出在很大程度上取决于可用于热交换的区域和隧道衬砌的热特性。结果还表明,在所考虑的管径范围内,根据热输出和泵的功率要求,在能量隧道中使用较大的管径更为有效。这些结果可以用作研究人员和从业人员的热效率优化指南。而间距是影响最小的因素。因此,能量隧道的总热输出在很大程度上取决于可用于热交换的区域和隧道衬砌的热特性。结果还表明,在所考虑的管径范围内,根据热输出和泵的功率要求,在能量隧道中使用较大的管径更为有效。这些结果可以用作研究人员和从业人员的热效率优化指南。而间距是影响最小的因素。因此,能量隧道的总热输出在很大程度上取决于可用于热交换的区域和隧道衬砌的热特性。结果还表明,在所考虑的管径范围内,根据热输出和泵的功率要求,在能量隧道中使用较大的管径更为有效。这些结果可以用作研究人员和从业人员的热效率优化指南。从热量输出和泵的功率要求来看,在能量隧道中使用较大直径的管道更为有效。这些结果可以用作研究人员和从业人员的热效率优化指南。从热量输出和泵的功率要求来看,在能量隧道中使用较大直径的管道更为有效。这些结果可以用作研究人员和从业人员的热效率优化指南。

更新日期:2020-12-01
down
wechat
bug