当前位置: X-MOL 学术Strength Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Deformation Relief of the Surface as a Characteristic of Fatigue Damage of Clad Aluminum Alloys. Part 1. Deformation Relief Evolution Under Cyclic Loading
Strength of Materials ( IF 0.7 ) Pub Date : 2020-11-28 , DOI: 10.1007/s11223-020-00223-5
S. R. Ignatovich , M. V. Karuskevich , S. S. Yutskevich

The formation and evolution of a deformation relief on the surface of a clad aluminum alloy are examined under cyclic loading. The deformation relief originates on the surface of a clad layer in the form of local plastic strain regions with higher roughness, which characterizes the fatigue damage of the material. Saturation (relative surface area covered with the deformation relief) is a two-dimensional property of the deformation relief, while plastic surface strain is its threedimensional characteristic. The deformation relief can be registered with a contactless interference profilometer. Deformation relief saturation vs number of load cycles relations were plotted. Those relations are established to be similar above a certain level of maximum cycle stresses.The plastic surface strain grows linearly with saturation; the relation possesses two linear sections irrespective of active cycle stresses. The deformation relief examination as an aggregate of fractal clusters demonstrated that the power relation between the total perimeter and area of those clusters was revealed. The two sections of that relation were chosen, and with a certain area of clusters, the exponent is shown to drop from 1.53 to 1.00. Its decrease is indicative of the fractality loss by the deformation relief clusters. The change in the clad layer damage mechanism is established to occur at the deformation relief saturation within 0.22–0.25. At such a saturation level, initial fatigue cracks originate, while fractal relief evolution and plastic surface strain behavior of a clad layer are changed.



中文翻译:

表面变形消除是复合铝合金疲劳损伤的特征。第1部分。循环荷载作用下的变形起伏演化

在循环载荷下检查了复合铝合金表面变形消除的形成和演变。变形消除以具有较高粗糙度的局部塑性应变区域的形式起源于覆层的表面,这表征了材料的疲劳损伤。饱和度(由变形消除物覆盖的相对表面积)是变形消除物的二维特性,而塑性表面应变是其三维特征。变形消除可以通过非接触式干涉轮廓仪进行记录。绘制了变形释放饱和度与荷载循环次数的关系。在一定的最大循环应力水平以上,这些关系被确定为相似。塑料表面应变随饱和度线性增长;与活动循环应力无关,该关系具有两个线性截面。作为分形簇的聚集体的变形消除检查表明,揭示了这些簇的总周长与面积之间的幂关系。选择了该关系的两个部分,并在具有一定群集区域的情况下,指数从1.53下降到1.00。它的减少表明变形消除簇引起的分形损失。包覆层损伤机制的变化被确定为发生在变形释放饱和度在0.22至0.25之间。在这种饱和水平下,会产生初始疲劳裂纹,而复合层的分形起伏演化和塑性表面应变行为会发生变化。作为分形簇的聚集体的变形消除检查表明,揭示了这些簇的总周长与面积之间的幂关系。选择了该关系的两个部分,并在具有一定群集区域的情况下,指数从1.53下降到1.00。它的减少表明变形消除簇引起的分形损失。包覆层损伤机制的变化被确定为发生在变形释放饱和度在0.22至0.25之间。在这种饱和水平下,会产生初始疲劳裂纹,而复合层的分形起伏演化和塑性表面应变行为会发生变化。作为分形簇的聚集体的变形消除检查表明,揭示了这些簇的总周长与面积之间的幂关系。选择了该关系的两个部分,并在具有一定群集区域的情况下,指数从1.53下降到1.00。它的减少表明变形消除簇引起的分形损失。包覆层损伤机制的变化被确定为发生在变形释放饱和度在0.22至0.25之间。在这种饱和水平下,会产生初始疲劳裂纹,而复合层的分形起伏演化和塑性表面应变行为会发生变化。并且在具有一定群集区域的情况下,指数从1.53下降到1.00。它的减少表明变形消除簇引起的分形损失。包覆层损伤机制的变化被确定为发生在变形释放饱和度在0.22至0.25之间。在这种饱和水平下,会产生初始疲劳裂纹,而复合层的分形起伏演化和塑性表面应变行为会发生变化。并且在具有一定群集区域的情况下,指数从1.53下降到1.00。它的减少表明变形消除簇引起的分形损失。包覆层损伤机制的变化被确定为发生在变形释放饱和度在0.22至0.25之间。在这种饱和水平下,会产生初始疲劳裂纹,而复合层的分形起伏演化和塑性表面应变行为会发生变化。

更新日期:2020-12-01
down
wechat
bug