当前位置: X-MOL 学术Adv. Civ. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Experimental Study on Desorption Characteristics of Coalbed Methane under Variable Loading and Temperature in Deep and High Geothermal Mine
Advances in Civil Engineering ( IF 1.5 ) Pub Date : 2020-11-27 , DOI: 10.1155/2020/8878125
Haifeng Ma 1, 2 , Lingjie Wang 2 , Housheng Jia 3 , Jucai Chang 2 , YingMing Li 2 , Xiangyang Zhang 2, 3 , Zuxiang Hu 2 , Zhiqiang Yin 2
Affiliation  

Due to the influence of deep high stress, geothermal heat, and other factors, the law of desorption of methane in coal seams is more complicated in the process of mining deep coal seams, which is prone to methane over-limit, coal and gas outburst, and other accidents. In order to study the desorption characteristics of coalbed methane under different loading and temperature conditions, the desorption tests at different deformation stages of coal containing methane were carried out in the process of loading-adsorption-desorption-reloading until the coal sample was destroyed by using the seepage-adsorption-desorption test system on coal and rock mass, and the test programs were different combinations of gas pressure 1.2 MPa, two kinds of confining pressure, and three kinds of temperature. The results show that the cumulative methane desorption amount corresponding to each deformation stage presents a convex parabolic increase trend with the increase in desorption time, while the desorption rate presents a power function decay trend. Under the condition of the same desorption time, the cumulative methane desorption amount from large to small is residual deformation stage, compaction stage, near the peak stress, plastic deformation stage, and elastic deformation stage. Under the same confining pressure, temperature, and methane pressure, the maximum desorption rate from large to small is residual deformation stage, near the peak stress, plastic deformation stage, compaction stage, and elastic deformation stage. The desorption and diffusion of methane are promoted under the higher temperature and lower confining pressure, which presents a certain mechanism of promoting desorption. The thermal movement of methane molecules is intensified with the increase in temperature, and the adsorption effect between methane molecules and the molecules at the surface of the coal is weakened. The cumulative methane desorption amount and the maximum desorption rate increase with the increase in temperature. The cumulative methane desorption in the residual deformation stage is obviously greater than that in other deformation stages. The increase in confining pressure inhibits the development and expansion of pore fractures in raw coal specimen and hinders the increase in the effective desorption surface area. The cumulative methane desorption amount and the maximum desorption rate decrease with the increase in confining pressure.

中文翻译:

深高地热矿井可变负荷和温度下煤层气解吸特性的实验研究

由于深部高应力,地热等因素的影响,深部煤层开采过程中煤层中甲烷的解吸规律较为复杂,容易出现甲烷超标,煤与瓦斯突出的现象。以及其他意外。为了研究煤层气在不同载荷和温度条件下的解吸特性,在煤的吸附-解吸-再装载过程中,对含甲烷的煤在不同变形阶段进行了解吸试验,直至煤样被破坏。煤,岩体的渗吸-吸附-解吸测试系统,测试程序分别为瓦斯压力1.2 MPa,两种围压和三种温度的不同组合。结果表明,随着解吸时间的增加,每个变形阶段对应的累积甲烷解吸量呈现出凸抛物线式增长趋势,而解吸速率呈现出幂函数衰减趋势。在相同的脱附时间条件下,甲烷的累积脱附量由大到小依次为残余变形阶段,压实阶段,峰值应力附近,塑性变形阶段和弹性变形阶段。在相同的围压,温度和甲烷压力下,最大的解吸速率从大到小是残余变形阶段,峰值应力附近,塑性变形阶段,压实阶段和弹性变形阶段。在较高的温度和较低的围压下促进了甲烷的解吸和扩散,呈现出促进解吸的某种机制。甲烷分子的热运动随着温度的升高而增强,甲烷分子与煤表面分子之间的吸附作用减弱。甲烷的累积解吸量和最大解吸速率随温度的升高而增加。残余变形阶段的甲烷累积解吸量明显大于其他变形阶段。围压的增加抑制了原煤样品中孔隙破裂的发展和扩大,并阻碍了有效解吸表面积的增加。随着围压的增加,甲烷的累积解吸量和最大解吸速率降低。甲烷分子的热运动随着温度的升高而增强,甲烷分子与煤表面分子之间的吸附作用减弱。甲烷的累积解吸量和最大解吸速率随温度的升高而增加。残余变形阶段的甲烷累积解吸量明显大于其他变形阶段。围压的增加抑制了原煤样品中孔隙破裂的发展和扩大,并阻碍了有效解吸表面积的增加。随着围压的增加,甲烷的累积解吸量和最大解吸速率降低。甲烷分子的热运动随着温度的升高而增强,甲烷分子与煤表面分子之间的吸附作用减弱。甲烷的累积解吸量和最大解吸速率随温度的升高而增加。残余变形阶段的甲烷累积解吸量明显大于其他变形阶段。围压的增加抑制了原煤样品中孔隙破裂的发展和扩大,并阻碍了有效解吸表面积的增加。随着围压的增加,甲烷的累积解吸量和最大解吸速率降低。甲烷分子与煤表面分子之间的吸附作用减弱。甲烷的累积解吸量和最大解吸速率随温度的升高而增加。残余变形阶段的甲烷累积解吸量明显大于其他变形阶段。围压的增加抑制了原煤样品中孔隙破裂的发展和扩大,并阻碍了有效解吸表面积的增加。随着围压的增加,甲烷的累积解吸量和最大解吸速率降低。甲烷分子与煤表面分子之间的吸附作用减弱。甲烷的累积解吸量和最大解吸速率随温度的升高而增加。残余变形阶段的甲烷累积解吸量明显大于其他变形阶段。围压的增加抑制了原煤样品中孔隙破裂的发展和扩大,并阻碍了有效解吸表面积的增加。随着围压的增加,甲烷的累积解吸量和最大解吸速率降低。残余变形阶段的甲烷累积解吸量明显大于其他变形阶段。围压的增加抑制了原煤样品中孔隙破裂的发展和扩大,并阻碍了有效解吸表面积的增加。随着围压的增加,甲烷的累积解吸量和最大解吸速率降低。残余变形阶段的甲烷累积解吸量明显大于其他变形阶段。围压的增加抑制了原煤样品中孔隙破裂的发展和扩大,并阻碍了有效解吸表面积的增加。随着围压的增加,甲烷的累积解吸量和最大解吸速率降低。
更新日期:2020-11-27
down
wechat
bug