当前位置: X-MOL 学术Process Saf. Environ. Prot. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Influence of the addition of titanium oxide nanoparticles to Fischer-Tropsch diesel synthesised from coal on the combustion characteristics and particulate emission of a diesel engine
Process Safety and Environmental Protection ( IF 7.8 ) Pub Date : 2021-01-01 , DOI: 10.1016/j.psep.2020.11.030
Limin Geng , Shijie Li , Yonggang Xiao , Hao Chen , Xubo Chen , Yanlei Ma

Abstract The use of Fischer–Tropsch (F–T) diesel synthesised from coal in automobiles can alleviate petroleum shortages and promote clean utilisation of coal. Because F–T diesel does not contain oxygen, in this study, we added TiO2 nanoparticles and n-octanol to the F–T diesel to serve as oxygenated enhancers to increase the oxygen content and reduce the particulate matter emission of F–T diesel. To achieve better combustion characteristics and emission performance, TiO2 nanoparticles with different concentrations (20, 50, and 100 ppm) were dispersed to the fuel blends of F–T diesel and n-octanol to determine the optimum amount of TiO2 nanoparticles. The brake thermal efficiency (BTE), combustion stability, number concentration, and size distribution of the ultrafine particulate (UFP) emission of the three nano-emulsion fuels were investigated on a turbocharged heavy-duty diesel engine. The experimental results indicated that the BTE of the F–T diesel and that of the nano-emulsion fuel T50 increased by 0.75 % and 2.26 %, respectively, compared with petro-diesel. The nano-emulsion fuels had higher peak cylinder pressure and peak heat release rate owing to the faster combustion rate caused by the micro-explosion of fuel droplets and higher thermal conductivity caused by the high surface-to-volume ratio of TiO2 nanoparticles. Moreover, the nano-emulsion fuels exhibited higher cyclic variations of peak cylinder pressures and more dispersed corresponding crank angles with the increase in the concentration of TiO2 nanoparticles. Compared with petro-diesel, the soot emission of the F–T diesel was reduced by an average of 27.32 % at various loads, whereas that of the optimal T50 decreased by an average of 43.61 %. Additionally, the number concentration of UFPs of T50 was reduced by an average of 21.2 % compared to the F–T diesel. At low loads, the three nano-emulsion fuels exhibited greater geometric mean diameters (GMDs) of UFPs and lower ratios of nucleation mode particulates (NMPs) owing to the higher fuel viscosity in the pre-injection stage at a lower in-cylinder temperature. At medium and high loads, the nano-emulsion fuels exhibited smaller GMDs of UFPs and higher ratios of NMPs owing to micro-explosion and secondary atomisation at higher temperatures.

中文翻译:

以煤为原料的费托柴油中添加氧化钛纳米颗粒对柴油机燃烧特性和颗粒物排放的影响

摘要 以煤为原料合成的费-托(F-T)柴油用于汽车,可以缓解石油短缺,促进煤炭清洁利用。由于 F-T 柴油不含氧气,因此在本研究中,我们在 F-T 柴油中添加了 TiO2 纳米颗粒和正辛醇作为氧化增强剂,以增加氧气含量并减少 F-T 柴油的颗粒物排放。为了获得更好的燃烧特性和排放性能,将不同浓度(20、50 和 100 ppm)的 TiO2 纳米颗粒分散到 F-T 柴油和正辛醇的燃料混合物中,以确定 TiO2 纳米颗粒的最佳用量。制动热效率(BTE)、燃烧稳定性、数浓度、在涡轮增压重型柴油机上研究了三种纳米乳化燃料的超细颗粒物 (UFP) 排放物和尺寸分布。实验结果表明,与石油柴油相比,F-T 柴油和纳米乳化燃料 T50 的 BTE 分别增加了 0.75% 和 2.26%。由于燃料液滴的微爆炸引起的燃烧速度更快,以及TiO2纳米颗粒的高表面积与体积比引起的更高的热导率,纳米乳液燃料具有更高的峰值气缸压力和峰值热释放率。此外,随着TiO2纳米颗粒浓度的增加,纳米乳液燃料表现出更高的气缸峰值压力循环变化和更分散的相应曲柄角。与石油柴油相比,不同负荷下,F-T柴油的烟尘排放平均降低了27.32%,而最佳T50柴油的烟尘排放平均降低了43.61%。此外,与 F-T 柴油相比,T50 的 UFP 数量浓度平均降低了 21.2%。在低负荷下,三种纳米乳液燃料表现出更大的 UFP 几何平均直径 (GMD) 和更低的成核模式颗粒 (NMP) 比率,因为在较低的缸内温度下预喷射阶段具有更高的燃料粘度。在中高负荷下,由于微爆和高温下的二次雾化,纳米乳液燃料表现出较小的 UFP GMD 和较高的 NMP 比率。此外,与 F-T 柴油相比,T50 的 UFP 数量浓度平均降低了 21.2%。在低负荷下,三种纳米乳液燃料表现出更大的 UFP 几何平均直径 (GMD) 和更低的成核模式颗粒 (NMP) 比率,因为在较低的缸内温度下预喷射阶段具有更高的燃料粘度。在中高负荷下,由于微爆和高温下的二次雾化,纳米乳液燃料表现出较小的 UFP GMD 和较高的 NMP 比率。此外,与 F-T 柴油相比,T50 的 UFP 数量浓度平均降低了 21.2%。在低负载下,三种纳米乳液燃料表现出更大的 UFP 几何平均直径 (GMD) 和更低的成核模式颗粒 (NMP) 比率,因为在较低的缸内温度下预喷射阶段的燃油粘度较高。在中高负荷下,纳米乳液燃料由于在较高温度下发生微爆炸和二次雾化,表现出较小的 UFP GMD 和较高的 NMP 比率。由于在较低的缸内温度下预喷射阶段较高的燃料粘度,三种纳米乳液燃料表现出更大的 UFP 几何平均直径 (GMD) 和更低的成核模式颗粒 (NMP) 比率。在中高负荷下,由于微爆和高温下的二次雾化,纳米乳液燃料表现出较小的 UFP GMD 和较高的 NMP 比率。由于在较低的缸内温度下预喷射阶段较高的燃料粘度,三种纳米乳液燃料表现出更大的 UFP 几何平均直径 (GMD) 和更低的成核模式颗粒 (NMP) 比率。在中高负荷下,由于微爆和高温下的二次雾化,纳米乳液燃料表现出较小的 UFP GMD 和较高的 NMP 比率。
更新日期:2021-01-01
down
wechat
bug