当前位置: X-MOL 学术J. Atmos. Sol. Terr. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Winds and tides of the Antarctic mesosphere and lower thermosphere: One year of meteor-radar observations over Rothera (68°S, 68°W) and comparisons with WACCM and eCMAM
Journal of Atmospheric and Solar-Terrestrial Physics ( IF 1.8 ) Pub Date : 2021-01-01 , DOI: 10.1016/j.jastp.2020.105510
Shaun M. Dempsey , Neil P. Hindley , Tracy Moffat-Griffin , Corwin J. Wright , Anne K. Smith , Jian Du , Nicholas J. Mitchell

Abstract Atmospheric tides play a critical role in the dynamics and coupling of mesosphere and lower-thermosphere (MLT). Global Circulation Models (GCMs) that aim to span the lower, middle and upper atmosphere must therefore be capable of reproducing the tides and observations of tides are thus crucial to constrain the models. Here we present the first climatology of the 12- and 24-h tides measured at heights of 80–100 km by a meteor radar over the Antarctic station of Rothera (68°S, 68°W). We use observations of tides from 2009 in the first test of two GCMs at these latitudes: the Whole Atmosphere Community Climate Model (WACCM) and the extended Canadian Middle Atmosphere Model (eCMAM, 24-h tide only). Our radar observations reveal large-amplitude 12- and 24-h tides which display a distinct seasonal variability. The 12-h tide maximises around the equinoxes, reaching daily-mean amplitudes of about 40 ms−1. The 24-h tide is generally of smaller amplitude and maximises in summer. The observed 12-h tide increases greatly in amplitude with increasing height over the range 80–100 km, whereas the 24-h tide generally does not do so. Comparison with the models shows that, for the 12-h tide, WACCM reproduces the observed amplitudes at heights near 80 km quite well, but does not reproduce either the strong observed increase with height or the equinoctial maxima. For the 24-h tide, WACCM reproduces the observed small variation in amplitude with height, but suggests amplitudes somewhat larger than those observed whilst eCMAM generally reproduces the observed tidal amplitudes and the small variation of amplitude with height. The radar observations reveal great day-to-day variability in the amplitude of both tides, much of which is quasi periodic and occurs at periods similar to those of planetary waves, suggesting that it originates in non-linear tidal/planetary-wave coupling. The observed and model background winds display some notable differences, particularly in winter when eastward winds are observed at all heights but not reproduced in the models. We propose that these differences may arise from the lack of in-situ gravity-wave sources in the models and that this may also account for some of the differences apparent between the observed and modelled tides.

中文翻译:

南极中层和低热层的风和潮汐:对罗瑟拉(68°S,68°W)的一年流星雷达观测以及与 WACCM 和 eCMAM 的比较

摘要 大气潮汐在中间层和低层温度层(MLT)的动力学和耦合中起着至关重要的作用。因此,旨在跨越低层、中层和高层大气的全球环流模型 (GCM) 必须能够再现潮汐,因此潮汐观测对于约束模型至关重要。在这里,我们展示了第一个 12 小时和 24 小时潮汐的气候学,它是由流星雷达在罗瑟拉南极站(68°S,68°W)上空测量的 80-100 公里高度。我们在这些纬度的两个 GCM 的首次测试中使用了 2009 年的潮汐观测数据:整个大气社区气候模型 (WACCM) 和扩展的加拿大中层大气模型(eCMAM,仅限 24 小时潮汐)。我们的雷达观测显示大振幅 12 小时和 24 小时潮汐显示出明显的季节性变化。12 小时潮汐在春分点附近最大化,达到约 40 ms-1 的日平均振幅。24 小时潮一般幅度较小,夏季最大。观测到的 12 小时潮汐在 80-100 公里范围内随着高度的增加幅度大大增加,而 24 小时潮汐通常不会这样做。与模型的比较表明,对于 12 小时潮汐,WACCM 很好地再现了 80 公里附近高度处的观测振幅,但没有再现观测到的随高度强烈增加或分界线最大值。对于 24 小时潮汐,WACCM 再现了观察到的振幅随高度的小变化,但表明振幅略大于观察到的振幅,而 eCMAM 通常再现观察到的潮汐振幅和振幅随高度的小变化。雷达观测显示,这两种潮汐的振幅每天都有很大的变化,其中大部分是准周期性的,并且发生在与行星波相似的周期,表明它起源于非线性潮汐/行星波耦合。观察到的和模型的背景风显示出一些显着的差异,特别是在冬季,在所有高度都观察到东风但模型中没有再现。我们认为这些差异可能是由于模型中缺乏原位重力波源而引起的,这也可能解释了观测到的潮汐和模拟的潮汐之间存在的一些明显差异。表明它起源于非线性潮汐/行星波耦合。观察到的和模型的背景风显示出一些显着的差异,特别是在冬季,在所有高度都观察到东风但模型中没有再现。我们认为这些差异可能是由于模型中缺乏原位重力波源而引起的,这也可能解释了观测到的潮汐和模拟的潮汐之间存在的一些明显差异。表明它起源于非线性潮汐/行星波耦合。观察到的和模型的背景风显示出一些显着的差异,特别是在冬季,在所有高度都观察到东风但模型中没有再现。我们认为这些差异可能是由于模型中缺乏原位重力波源而引起的,这也可能解释了观测到的潮汐和模拟的潮汐之间存在的一些明显差异。
更新日期:2021-01-01
down
wechat
bug