当前位置: X-MOL 学术Chem. Eng. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Modeling the Solid/liquid Interfacial Properties of Methylimidazole Confined in Hydrophobic Silica Nanopores
Chemical Engineering Science ( IF 4.1 ) Pub Date : 2020-11-26 , DOI: 10.1016/j.ces.2020.116333
Weizhong Zheng , Weizhen Sun , Ling Zhao , Feng Qian

Many chemical processes proceed in confined environments of silica nanopore, in which the confined reactants or guest adsorbates show drastically different properties from the bulk system. Therefore, the solid/liquid interfacial structure and dynamics of 1-methylimidazole (MeIm) confined in the hydrophobic silica nanopore passivated by methoxysilane groups (-Si(Me)3) were investigated using molecular dynamics (MD) simulations. The mass density of the confined MeIm is layering and pore-size independent, while the negligible layering structure for charge density is observed. The smaller pore size gives rise to a significantly slower reorientation dynamics and translational diffusion of MeIm. In 2.8 nm pore, the parallel diffusion coefficient of MeIm is nearly 10 times larger than the perpendicular one, and their difference becomes smaller with the increase in pore size. Hopefully the insights from this work are helpful to a better understanding of the effects of hydrophobic silica pore on the confined behaviors of liquids.



中文翻译:

模拟限制在疏水性二氧化硅纳米孔中的甲基咪唑的固/液界面性质

许多化学过程是在二氧化硅纳米孔的密闭环境中进行的,在密闭环境中,密闭的反应物或客体吸附物显示出与本体系统完全不同的特性。因此,被甲氧基硅烷基团(-Si(Me)3钝化的疏水性二氧化硅纳米孔中的1-甲基咪唑(MeIm)的固/液界面结构和动力学)是使用分子动力学(MD)模拟进行研究的。受限的MeIm的质量密度是分层的并且不依赖于孔径,而观察到电荷密度的可忽略的分层结构。较小的孔径导致MeIm的重新定向动力学和平移扩散明显变慢。在2.8 nm的孔隙中,MeIm的平行扩散系数几乎是垂直扩散系数的10倍,并且它们的差异随着孔径的增加而变小。希望从这项工作中获得的见解有助于更好地了解疏水性二氧化硅孔对液体受限行为的影响。

更新日期:2020-11-27
down
wechat
bug