当前位置: X-MOL 学术Science › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Critical instability at moving keyhole tip generates porosity in laser melting
Science ( IF 44.7 ) Pub Date : 2020-11-26 , DOI: 10.1126/science.abd1587
Cang Zhao 1, 2 , Niranjan D. Parab 3 , Xuxiao Li 4 , Kamel Fezzaa 3 , Wenda Tan 4 , Anthony D. Rollett 5, 6 , Tao Sun 7
Affiliation  

Driving the pores away The formation of “keyholes” (vapor-filled depressions) during additive manufacturing leads to porosity, which degrades alloy performance, especially fracture properties, and remains a big challenge for the 3D printing of metals. Zhao et al. used high-speed x-ray imaging to take a detailed look at how keyhole formation connects to porosity in a titanium alloy. They found that instability at the keyhole tip drives pores away to get trapped in the solidification front. Understanding this process and the operating parameters under which it occurs provides a roadmap for avoiding porosity and building high-quality metal parts. Science, this issue p. 1080 Pores trapped during additive manufacturing are connected to acoustic waves generated by keyhole instability. Laser powder bed fusion is a dominant metal 3D printing technology. However, porosity defects remain a challenge for fatigue-sensitive applications. Some porosity is associated with deep and narrow vapor depressions called keyholes, which occur under high-power, low–scan speed laser melting conditions. High-speed x-ray imaging enables operando observation of the detailed formation process of pores in Ti-6Al-4V caused by a critical instability at the keyhole tip. We found that the boundary of the keyhole porosity regime in power-velocity space is sharp and smooth, varying only slightly between the bare plate and powder bed. The critical keyhole instability generates acoustic waves in the melt pool that provide additional yet vital driving force for the pores near the keyhole tip to move away from the keyhole and become trapped as defects.

中文翻译:

移动小孔尖端的临界不稳定性在激光熔化中产生孔隙

驱散孔隙增材制造过程中“锁孔”(蒸汽填充的凹陷)的形成会导致孔隙率下降,这会降低合金性能,尤其是断裂性能,并且仍然是金属 3D 打印的一大挑战。赵等人。使用高速 X 射线成像来详细研究小孔的形成与钛合金中的孔隙度的关系。他们发现锁孔尖端的不稳定性驱使孔隙远离凝固前沿。了解此过程及其发生的操作参数为避免孔隙率和制造高质量金属零件提供了路线图。科学,这个问题 p。增材制造过程中捕获的 1080 个孔隙与锁孔不稳定性产生的声波有关。激光粉末床融合是一种占主导地位的金属 3D 打印技术。然而,孔隙缺陷仍然是疲劳敏感应用的挑战。一些孔隙率与称为锁孔的深而窄的蒸汽凹陷有关,这种凹陷是在高功率、低扫描速度的激光熔化条件下发生的。高速 X 射线成像能够对 Ti-6Al-4V 中由锁孔尖端的临界不稳定性引起的孔隙的详细形成过程进行操作观察。我们发现功率-速度空间中的匙孔孔隙度边界是尖锐和光滑的,在裸板和粉末床之间仅略有不同。关键的小孔不稳定性会在熔池中产生声波,为小孔尖端附近的孔隙提供额外的重要驱动力,使其远离小孔并作为缺陷被困住。一些孔隙率与称为锁孔的深而窄的蒸汽凹陷有关,这种凹陷是在高功率、低扫描速度的激光熔化条件下发生的。高速 X 射线成像能够对 Ti-6Al-4V 中由锁孔尖端的临界不稳定性引起的孔隙的详细形成过程进行操作观察。我们发现功率-速度空间中的匙孔孔隙度边界是尖锐和光滑的,在裸板和粉末床之间仅略有不同。关键的小孔不稳定性会在熔池中产生声波,为小孔尖端附近的孔隙提供额外的重要驱动力,使其远离小孔并作为缺陷被困住。一些孔隙率与称为锁孔的深而窄的蒸汽凹陷有关,这种凹陷是在高功率、低扫描速度的激光熔化条件下发生的。高速 X 射线成像能够对 Ti-6Al-4V 中由锁孔尖端的临界不稳定性引起的孔隙的详细形成过程进行操作观察。我们发现功率-速度空间中的匙孔孔隙度边界是尖锐和光滑的,在裸板和粉末床之间仅略有不同。关键的小孔不稳定性会在熔池中产生声波,为小孔尖端附近的孔隙提供额外的重要驱动力,使其远离小孔并作为缺陷被困住。高速 X 射线成像能够对 Ti-6Al-4V 中由锁孔尖端的临界不稳定性引起的孔隙的详细形成过程进行操作观察。我们发现功率-速度空间中的匙孔孔隙度边界是尖锐和光滑的,在裸板和粉末床之间仅略有不同。关键的小孔不稳定性会在熔池中产生声波,为小孔尖端附近的孔隙提供额外的重要驱动力,使其远离小孔并作为缺陷被困住。高速 X 射线成像能够对 Ti-6Al-4V 中由锁孔尖端的临界不稳定性引起的孔隙的详细形成过程进行操作观察。我们发现功率-速度空间中的匙孔孔隙度边界是尖锐和光滑的,在裸板和粉末床之间仅略有不同。关键的小孔不稳定性会在熔池中产生声波,为小孔尖端附近的孔隙提供额外的重要驱动力,使其远离小孔并作为缺陷被困住。裸板和粉床之间仅略有不同。关键的小孔不稳定性会在熔池中产生声波,为小孔尖端附近的孔隙提供额外的重要驱动力,使其远离小孔并作为缺陷被困住。裸板和粉床之间仅略有不同。关键的小孔不稳定性会在熔池中产生声波,为小孔尖端附近的孔隙提供额外的重要驱动力,使其远离小孔并作为缺陷被困住。
更新日期:2020-11-26
down
wechat
bug