当前位置: X-MOL 学术IEEE/CAA J. Automatica Sinica › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Modeling and trajectory tracking control for flapping-wing micro aerial vehicles
IEEE/CAA Journal of Automatica Sinica ( IF 15.3 ) Pub Date : 2020-09-24 , DOI: 10.1109/jas.2020.1003417
Wei He 1 , Xinxing Mu 1 , Liang Zhang 1 , Yao Zou 1
Affiliation  

This paper studies the trajectory tracking problem of flapping-wing micro aerial vehicles ( FWMAVs ) in the longitudinal plane. First of all, the kinematics and dynamics of the FWMAV are established, wherein the aerodynamic force and torque generated by flapping wings and the tail wing are explicitly formulated with respect to the flapping frequency of the wings and the degree of tail wing inclination. To achieve autonomous tracking, an adaptive control scheme is proposed under the hierarchical framework. Specifically, a bounded position controller with hyperbolic tangent functions is designed to produce the desired aerodynamic force, and a pitch command is extracted from the designed position controller. Next, an adaptive attitude controller is designed to track the extracted pitch command, where a radial basis function neural network is introduced to approximate the unknown aerodynamic perturbation torque. Finally, the flapping frequency of the wings and the degree of tail wing inclination are calculated from the designed position and attitude controllers, respectively. In terms of Lyapunovʼ s direct method, it is shown that the tracking errors are bounded and ultimately converge to a small neighborhood around the origin. Simulations are carried out to verify the effectiveness of the proposed control scheme.

中文翻译:

襟翼微型飞行器的建模和轨迹跟踪控制

本文研究了襟翼微型飞行器(FWMAV)在纵向平面上的轨迹跟踪问题。首先,建立了FWMAV的运动学和动力学,其中,关于襟翼的拍打频率和尾翼的倾斜程度,明确制定了由襟翼和尾翼产生的空气动力和扭矩。为了实现自主跟踪,在分层框架下提出了一种自适应控制方案。具体来说,设计具有双曲正切函数的有界位置控制器以产生所需的空气动力,并从设计的位置控制器中提取俯仰命令。接下来,设计一个自适应姿态控制器来跟踪提取的俯仰命令,其中引入了径向基函数神经网络来近似未知的气动扰动转矩。最后,分别从设计的位置和姿态控制器计算出机翼的拍打频率和尾翼的倾斜度。根据李雅普诺夫的直接方法,表明跟踪误差是有界的,最终收敛到原点周围的一个小邻域。进行仿真以验证所提出的控制方案的有效性。结果表明,跟踪误差是有界的,最终收敛到原点周围的一个小邻域。进行仿真以验证所提出的控制方案的有效性。结果表明,跟踪误差是有界的,最终收敛到原点周围的一个小邻域。进行仿真以验证所提出的控制方案的有效性。
更新日期:2020-11-27
down
wechat
bug