当前位置: X-MOL 学术IEEE Commun. Mag. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
NOMA-Based IoT Networks: Impulsive Noise Effects and Mitigation
IEEE Communications Magazine ( IF 8.3 ) Pub Date : 2020-11-01 , DOI: 10.1109/mcom.001.1900713
Bassant Selim , Md Sahabul Alam , Joao V. C. Evangelista , Georges Kaddoum , Basile L. Agba

The rise of the Internet of Things (IoT) presents important challenges for future radio networks. Non-orthogonal multiple access (NOMA), which allows the network to support more than one user per orthogonal resource element, was recently proposed as a promising solution that can ultimately support the daunting requirements of such networks including massive connectivity, high spectral efficiency, and low latency. Nevertheless, numerous ultra-high-reliability applications of IoT present environments that are hampered by impulsive electromagnetic interference, referred to as impulsive noise. Such noise is known to cause degradation to the overall system performance. Moreover, given the non-orthogonal multiplexing in NOMA, such noise is expected to have a relatively more pronounced impact on the system performance. Therefore, this article sheds light on the performance degradation and mitigation of impulsive noise in the context of NOMA-based IoT networks. It proposes a multistage nonlinear processing approach specifically designed for OFDM-based PDM-NOMA systems. To obtain the optimum threshold of the corresponding users, we propose a deep learning approach to estimate the impulsive noise parameters from the received OFDM symbol. This information can consequently be used to evaluate the corresponding optimal threshold using Siegert's ideal observer criterion. Finally, this work sheds light on potential opportunities and challenges that are expected to arise during the implementation of NOMA in impulsive environments.

中文翻译:

基于 NOMA 的物联网网络:脉冲噪声影响和缓解

物联网 (IoT) 的兴起为未来的无线电网络带来了重要挑战。非正交多址 (NOMA) 允许网络支持每个正交资源元素多个用户,最近被提出作为一种有前途的解决方案,最终可以支持此类网络的艰巨要求,包括大规模连接、高频谱效率和低延迟。然而,物联网的众多超高可靠性应用存在受到脉冲电磁干扰(称为脉冲噪声)阻碍的环境。已知这种噪声会导致整体系统性能下降。此外,考虑到 NOMA 中的非正交复用,预计此类噪声对系统性能的影响会相对更显着。所以,本文阐明了在基于 NOMA 的物联网网络环境中脉冲噪声的性能下降和缓解。它提出了一种专为基于 OFDM 的 PDM-NOMA 系统设计的多级非线性处理方法。为了获得相应用户的最佳阈值,我们提出了一种深度学习方法,从接收到的 OFDM 符号中估计脉冲噪声参数。因此,该信息可用于使用 Siegert 的理想观察者标准来评估相应的最佳阈值。最后,这项工作揭示了在冲动环境中实施 NOMA 期间预计会出现的潜在机遇和挑战。它提出了一种专为基于 OFDM 的 PDM-NOMA 系统设计的多级非线性处理方法。为了获得相应用户的最佳阈值,我们提出了一种深度学习方法,从接收到的 OFDM 符号中估计脉冲噪声参数。因此,该信息可用于使用 Siegert 的理想观察者标准来评估相应的最佳阈值。最后,这项工作揭示了在冲动环境中实施 NOMA 期间预计会出现的潜在机遇和挑战。它提出了一种专为基于 OFDM 的 PDM-NOMA 系统设计的多级非线性处理方法。为了获得相应用户的最佳阈值,我们提出了一种深度学习方法,从接收到的 OFDM 符号中估计脉冲噪声参数。因此,该信息可用于使用 Siegert 的理想观察者标准来评估相应的最佳阈值。最后,这项工作揭示了在冲动环境中实施 NOMA 期间预计会出现的潜在机遇和挑战。因此,该信息可用于使用 Siegert 的理想观察者标准来评估相应的最佳阈值。最后,这项工作揭示了在冲动环境中实施 NOMA 期间预计会出现的潜在机遇和挑战。因此,该信息可用于使用 Siegert 的理想观察者标准来评估相应的最佳阈值。最后,这项工作揭示了在冲动环境中实施 NOMA 期间预计会出现的潜在机遇和挑战。
更新日期:2020-11-01
down
wechat
bug