当前位置: X-MOL 学术Environ. Technol. Innov. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An environmentally sustainable green process for the utilization of damaged wheat grains for poly-3-hydroxybutyrate production
Environmental Technology & Innovation ( IF 6.7 ) Pub Date : 2020-11-26 , DOI: 10.1016/j.eti.2020.101271
Ranjna Sirohi , Jai Prakash Pandey , Ayon Tarafdar , Aparna Agarwal , Sadhan Kumar Chaudhuri , Raveendran Sindhu

Conventional plastics take a long time to decompose posing a threat to the environment and the general health of all life forms. Scientific advancements towards replacing these petrochemically derived plastics have led to a stride in biopolymer research with emphasis on poly-3-hydroxybutyrate (PHB). However, current methods for PHB production are either too expensive or are environmentally unsustainable. Therefore, the aim of this work was to develop a green and environmentally sustainable process for the production of PHB from damaged wheat grains (DWG) as a novel cost-effective substrate. Initially, sequential enzymatic hydrolysis of the damaged grain flour was carried out using α-amylase and glucoamylase. Hydrolysate exhibiting highest reducing sugar content was subjected to fermentation using Bacillus sp NII2 strain. The process was evaluated based on sugars consumption, cell biomass and PHB production. Maximum PHB production (1.305 g/L or 34% accumulation) was achieved at 8.84% (v/v) inoculum concentration, 32.07 g/L reducing sugar concentration in the medium and 72 h incubation time. Regression models were formulated with reasonable accuracy (R2>0.8). Analysis of the resulting biopolymer through nuclear magnetic resonance imaging (1H-NMR, 13C-NMR) and Fourier transform infrared spectroscopy confirmed the presence of characteristic PHB groups (-CH, -CH2, -CH3, -C=O, -C-O-C-). X-ray diffraction showed partial crystallinity of PHB biopolymer with degree of crystallinity of 65.2%. Scanning electron microscopy revealed the presence of non-uniformly distributed pores on the otherwise relatively continuous surface of PHB. Thermal analysis of PHB using thermogravimetry (TGA/DTG-DTA) showed that the biopolymer was stable up to 228 °C. Optical properties revealed good UV-C blocking abilities of the synthesized PHB. The PHB produced from DWG opens a new avenue for its sustainable utilization and application in development of biodegradable food packaging.



中文翻译:

利用环境受损的绿色工艺利用受损的小麦籽粒生产聚3-羟基丁酸酯

常规塑料需要花费很长时间才能分解,这对环境和所有生命形式的整体健康构成了威胁。替代这些石油化学衍生塑料的科学进步已导致生物聚合物研究取得了长足发展,重点是聚3-羟基丁酸酯(PHB)。但是,目前的PHB生产方法要么太昂贵,要么在环境上不可持续。因此,这项工作的目的是开发一种绿色环保的可持续生产工艺,用受损的小麦籽粒(DWG)作为一种新的具有成本效益的基质生产PHB。最初,使用以下方法对受损的谷物粉进行顺序酶水解α-淀粉酶和葡糖淀粉酶。表现出最高还原糖含量的水解产物使用芽孢杆菌属NII2菌株进行发酵。基于糖的消耗,细胞生物量和PHB的生产来评估该过程。在培养基浓度为8.84%(v / v),培养基中还原糖浓度为32.07 g / L,孵育时间为72 h时,PHB产量最高(1.305 g / L或34%积累)。回归模型的制定具有合理的准确性(R 2 > 0.8)。通过核磁共振成像(1 H-NMR,13 C-NMR)和傅立叶变换红外光谱分析所得的生物聚合物, 证实存在特征性PHB基团(-CH,-CH 2,-CH 3),-C = O,-COC-)。X射线衍射显示PHB生物聚合物的部分结晶度,结晶度为65.2%。扫描电子显微镜显示在PHB的相对连续的表面上存在不均匀分布的孔。使用热重分析法(TGA / DTG-DTA)对PHB进行热分析表明,该生物聚合物在高达228°C的温度下稳定。光学性质显示出合成的PHB具有良好的UV-C阻断能力。DWG生产的PHB为其在生物降解食品包装开发中的可持续利用和应用开辟了一条新途径。

更新日期:2020-12-04
down
wechat
bug