当前位置: X-MOL 学术Extreme Mech. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Monolithic binary stiffness building blocks for mechanical digital machines
Extreme Mechanics Letters ( IF 4.7 ) Pub Date : 2020-11-26 , DOI: 10.1016/j.eml.2020.101120
P.R. Kuppens , M.A. Bessa , J.L. Herder , J.B. Hopkins

We introduce two essential building blocks with binary stiffness for mechanical digital machines. The large scale fully compliant mechanisms have rectilinear and rotational kinematics and use a new V-shaped negative stiffness structure to create two extreme states of stiffness by static balancing. The use of a mechanical bistable switch allows us to toggle between near-zero-stiffness and high-stiffness states, effectively turning off and on stiffness. A stiffness reduction of 98.8 % and 99.9 % is achieved for linear and rotary motion over a range of 13.3 % (20 mm) and 0.4 rad (23) respectively. Stiffness states can be reversibly changed by toggling the mechanical switch, or irreversibly by actuating the main stage.

These binary stiffness mechanisms could set the stage for a new type of mechanical logic, adaptive and programmable metamaterials and other types of digital mechanical devices. Practical mechanical digital machines and materials require miniaturized and easily micro-manufactured components. We have therefore carefully considered scalability by integrating all required structures into a planar and monolithic architecture. This allows miniaturization and fabrication with conventional surface-micro-machining and additive manufacturing such as photolithography, two-photon lithography and fused deposition modeling.



中文翻译:

机械数字机器的整体式二元刚度构建块

我们为机械数字机器介绍了两个具有二进制刚度的基本构建块。大型的完全顺应机构具有直线运动和旋转运动学,并使用新的V形负刚度结构通过静态平衡创建两个极限刚度状态。机械双稳态开关的使用使我们能够在接近零刚度和高刚度状态之间切换,从而有效地关闭和打开刚度。线性和旋转运动在13.3%(20 mm)和0.4 rad(23)的范围内的刚度降低了98.8%和99.9%) 分别。可以通过触发机械开关来可逆地改变刚度状态,或者通过启动主级来不可逆地改变刚度状态。

这些二元刚度机制可以为新型机械逻辑,自适应和可编程超材料以及其他类型的数字机械设备奠定基础。实用的机械数字机器和材料需要小型化且易于微制造的组件。因此,我们通过将所有必需的结构集成到平面和整体式体系结构中来仔细考虑了可伸缩性。这允许通过传统的表面微加工和增材制造(例如光刻,双光子光刻和熔融沉积建模)进行小型化和制造。

更新日期:2020-12-14
down
wechat
bug