当前位置: X-MOL 学术Eng. Fract. Mech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mode I debonding under large deformation conditions including notes on cleavage-peeling transition
Engineering Fracture Mechanics ( IF 5.4 ) Pub Date : 2021-01-01 , DOI: 10.1016/j.engfracmech.2020.107413
Simon Heide-Jørgensen , Michal K. Budzik , Kristian B. Buhl , Mogens Hinge , Steen U. Pedersen , Kim Daasbjerg , Mikkel Kongsfelt

Abstract Peeling and cleavage are common load cases for studying and evaluating adhesion between materials. The former is suitable for testing adhesion of thin or highly flexible materials for which the bending energy is negligible while the latter uses the rate of released bending energy as a measure of fracture energy. Their data reduction schemes are very different, which could lead to situations where peel-cleavage transition cases are misinterpreted. In this work, two analytical frameworks allowing transition between peel and cleavage configurations to be accounted for, are exploited. The first is an elliptic integral based solution, which in the present study is enhanced by the elastic foundation formulation to mimic interfacial reaction forces to external loading. The second is built on a pseudo-linear equivalent system, which allows representation of geometrically non-linear problem through a number of simple, linear segments. Both solutions are successfully confronted against each other and a geometrically non-linear finite element formulation. In addition to the analytical framework, a number of phenomenological insights into the transition are gained. These are presented as master curves relating geometrical and material parameters to the shape of the steady-state fracture response and the rotation of the load application point through the spectrum from cleavage to peeling. The disclosed results could prove valuable when designing, evaluating or analyzing mode I fracture of materials and structures of finite and non-zero bending stiffness.

中文翻译:

大变形条件下的模式 I 脱粘,包括解理剥离过渡的注意事项

摘要 剥离和解理是研究和评估材料间附着力的常见载荷情况。前者适用于测试弯曲能可以忽略不计的薄或高柔性材料的附着力,而后者使用释放弯曲能的速率作为断裂能的量度。他们的数据简化方案非常不同,这可能导致剥离-解理过渡情况被误解的情况。在这项工作中,利用了两个分析框架,允许考虑剥离和解理配置之间的转换。第一个是基于椭圆积分的解决方案,在本研究中,它通过弹性基础公式得到增强,以模拟界面对外部载荷的反作用力。第二个建立在伪线性等效系统上,它允许通过许多简单的线性段来表示几何非线性问题。两种解决方案都成功地相互对抗,并形成了几何非线性有限元公式。除了分析框架外,还获得了许多关于转变的现象学见解。这些被呈现为将几何和材料参数与稳态断裂响应的形状和载荷施加点的旋转通过从解理到剥离的频谱相关的主曲线。在设计、评估或分析具有有限和非零弯曲刚度的材料和结构的 I 型断裂时,所公开的结果可以证明是有价值的。两种解决方案都成功地相互对抗,并形成了几何非线性有限元公式。除了分析框架外,还获得了许多关于转变的现象学见解。这些被呈现为将几何和材料参数与稳态断裂响应的形状和载荷施加点的旋转通过从解理到剥离的频谱相关的主曲线。在设计、评估或分析具有有限和非零弯曲刚度的材料和结构的 I 型断裂时,所公开的结果可以证明是有价值的。两种解决方案都成功地相互对抗,并形成了几何非线性有限元公式。除了分析框架外,还获得了许多关于转变的现象学见解。这些被呈现为将几何和材料参数与稳态断裂响应的形状和载荷施加点的旋转通过从解理到剥离的频谱相关的主曲线。在设计、评估或分析具有有限和非零弯曲刚度的材料和结构的 I 型断裂时,所公开的结果可以证明是有价值的。这些被呈现为将几何和材料参数与稳态断裂响应的形状和载荷施加点的旋转通过从解理到剥离的频谱相关的主曲线。在设计、评估或分析具有有限和非零弯曲刚度的材料和结构的 I 型断裂时,所公开的结果可以证明是有价值的。这些被呈现为将几何和材料参数与稳态断裂响应的形状和载荷施加点的旋转通过从解理到剥离的频谱相关的主曲线。在设计、评估或分析具有有限和非零弯曲刚度的材料和结构的 I 型断裂时,所公开的结果可以证明是有价值的。
更新日期:2021-01-01
down
wechat
bug