当前位置: X-MOL 学术J. Braz. Soc. Mech. Sci. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An efficient homogenization scheme for analyzing the elastic properties of hybrid nanocomposites filled with multiscale particles
Journal of the Brazilian Society of Mechanical Sciences and Engineering ( IF 1.8 ) Pub Date : 2020-11-26 , DOI: 10.1007/s40430-020-02709-4
M. Pakseresht , R. Ansari , M. K. Hassanzadeh-Aghdam

Designing material requires the establishment of structure–property relationships for multiscaled nanoparticle/microparticle-reinforced polymer hybrid nanocomposites. This fundamental task is the first step in developing a reliable new method. In the present study, two micromechanical analytical models are proposed to develop an efficient homogenization scheme, in the case of calculating elastic properties for a multiscaled hybrid nanocomposite consisting of silica nanoparticles and glass microparticles embedded in the epoxy matrix. In the small scale, we consider homogenous interphase surrounding the nanoparticle which the first model takes into consideration. In the small scale, considering the thickness of this interphase as variable and characteristic length scale, the influence of nanoparticle size on the overall elastic properties is calculated. In the large scale, an interface model of homogenization is proposed; this model too calculates the elastic properties of the overall nanocomposite as a function of inclusion size in microsize representative volume elements. In the large scale, the existence of surface stress and strains is a result of “sticking” behavior of the matrix to the inclusion surfaces. By combining these two models, we can determine the effective elastic properties of a hybrid nanocomposite as a function of nanoparticle size, microscale inclusion size, interphase thickness, and volume fractions. The model predictions are in good agreement with the experimental data provided in the literature.



中文翻译:

一种有效的均化方案,用于分析填充多尺度颗粒的杂化纳米复合材料的弹性

设计材料需要建立多尺度纳米颗粒/微粒增强的聚合物杂化纳米复合材料的结构-性能关系。这项基本任务是开发可靠的新方法的第一步。在本研究中,在计算由二氧化硅纳米颗粒和嵌入环氧树脂基体中的玻璃纳米颗粒组成的多尺度杂化纳米复合材料的弹性时,提出了两个微机械分析模型来开发有效的均质方案。在小规模下,我们考虑了第一个模型考虑到的围绕纳米颗粒的均匀相间相。在小规模上,将此相的厚度视为可变长度和特征长度尺度,计算了纳米颗粒尺寸对整体弹性的影响。大规模提出了均质化的界面模型。该模型还计算了整个纳米复合材料的弹性特性,该弹性特性是微米尺寸代表体积元素中夹杂物尺寸的函数。大规模地讲,表面应力和应变的存在是基体“粘附”于内含物表面的结果。通过结合这两个模型,我们可以确定杂化纳米复合材料的有效弹性性能,该函数是纳米颗粒尺寸,微米级夹杂物尺寸,相间厚度和体积分数的函数。模型预测与文献中提供的实验数据非常吻合。该模型还计算了整个纳米复合材料的弹性特性,该弹性特性是微米尺寸代表体积元素中夹杂物尺寸的函数。大规模地讲,表面应力和应变的存在是基体“粘附”于内含物表面的结果。通过结合这两个模型,我们可以确定杂化纳米复合材料的有效弹性性能,该函数是纳米颗粒尺寸,微米级夹杂物尺寸,相间厚度和体积分数的函数。模型预测与文献中提供的实验数据非常吻合。该模型还计算了整个纳米复合材料的弹性特性,该弹性特性是微米尺寸代表体积元素中夹杂物尺寸的函数。大规模地讲,表面应力和应变的存在是基体“粘附”于内含物表面的结果。通过结合这两个模型,我们可以确定杂化纳米复合材料的有效弹性性能,该函数是纳米颗粒尺寸,微米级夹杂物尺寸,相间厚度和体积分数的函数。模型预测与文献中提供的实验数据非常吻合。表面应力和应变的存在是基体“粘附”到内含物表面的结果。通过结合这两个模型,我们可以确定杂化纳米复合材料的有效弹性性能,该函数是纳米颗粒尺寸,微米级夹杂物尺寸,相间厚度和体积分数的函数。模型预测与文献中提供的实验数据非常吻合。表面应力和应变的存在是基体“粘附”到内含物表面的结果。通过结合这两个模型,我们可以确定杂化纳米复合材料的有效弹性性能,该函数是纳米颗粒尺寸,微米级夹杂物尺寸,相间厚度和体积分数的函数。模型预测与文献中提供的实验数据非常吻合。

更新日期:2020-11-27
down
wechat
bug