当前位置: X-MOL 学术Nano › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Capacitive Behavior of Sodium Ion Pre-Intercalation Manganese Dioxide Supported on Titanium Nitride Substrate
Nano ( IF 1.0 ) Pub Date : 2020-10-15 , DOI: 10.1142/s1793292020501520
Yibing Xie 1
Affiliation  

The sodium ion pre-intercalation manganese dioxide (Na[Formula: see text]MnO[Formula: see text] is supported on titanium nitride (TiN) substrate to form electroactive Na[Formula: see text]MnO2/TiN electrode through an electrodeposition process in Mn(CH3COOH)2/Na2SO4 precursors with high Mn/Na ratio. MnO2 has a tiled leaf-like structure with a wrinkling morphology. Na[Formula: see text]MnO2 has a cross-linking nanorod structure with a nanoporous morphology, which is beneficial for electrolyte ion diffusion. The density functional theory (DFT) calculation results indicate that Na[Formula: see text]MnO2 reveals the enhanced density of states (DOS) and the lowered band gap than MnO2, which is consistent with higher cyclic voltammetry current response due to superior electroactivity of Na[Formula: see text]MnO2. The Faradaic process involves Na[Formula: see text] adsorption/desorption on the surface of MnO2 by contributing to electrochemical capacitance and Na[Formula: see text] intercalation/deintercalation on the deep interlayer of pre-intercalation Na[Formula: see text]MnO2 by contributing to pseudocapacitance. Concerning the electrolyte ion size effect, both MnO2/TiN and Na[Formula: see text]MnO2/TiN electrodes have higher capacitive performance in Li2SO4 electrolyte than that in Na2SO4 and K2SO4 electrolyte due to more feasible Li[Formula: see text] diffusion. When MnO2 is converted into Na[Formula: see text]MnO2, the capacitance at 2.5 mA cm[Formula: see text] increases from 351.3 mF cm[Formula: see text] to 405.6 mF cm[Formula: see text] in Na2SO4 electrolyte and from 376.3 mF cm[Formula: see text] to 465.1 mF cm[Formula: see text] in Li2SO4 electrolyte. The conductive TiN substrate leads to high rate capacity retention ratio of 50.7% for MnO2/TiN and 49.5% for Na[Formula: see text]MnO2/TiN when current density increases from 0.5 mA cm[Formula: see text] to 5 mA cm[Formula: see text]. So, Na[Formula: see text]MnO2/TiN with sodium ion pre-intercalation exhibits the improved capacitive performance in Li2SO4 electrolyte to act well as the promising supercapacitor electrode.

中文翻译:

氮化钛衬底负载钠离子预插层二氧化锰的电容行为

将钠离子预插层二氧化锰(Na[分子式:见文]MnO[分子式:见文]负载在氮化钛(TiN)衬底上形成电活性Na[分子式:见文]MnO2/TiN 电极通过电沉积工艺在 Mn(CH3醇)2/钠2所以4具有高 Mn/Na 比的前驱体。二氧化锰2具有平铺的叶状结构,具有起皱的形态。Na[式:见正文]MnO2具有交联纳米棒结构,具有纳米多孔形态,有利于电解质离子扩散。密度泛函理论(DFT)计算结果表明,Na[公式:见正文]MnO2揭示了比 MnO 增强的态密度 (DOS) 和降低的带隙2, 这与较高的循环伏安电流响应一致,这是由于 Na [公式:见正文]MnO 具有优异的电活性2. 法拉第过程涉及 Na[公式:见正文] 在 MnO 表面的吸附/解吸2通过促进电化学电容和Na[公式:见正文]在预插层Na的深夹层上的嵌入/脱嵌[公式:见正文]MnO2通过促进赝电容。关于电解质离子尺寸效应,MnO2/TiN和Na[公式:见正文]MnO2/TiN电极在Li中具有更高的电容性能2所以4电解质比钠2所以4和 K2所以4电解质由于更可行的Li[公式:见正文]扩散。当 MnO2转化为Na[公式:见正文]MnO2,在 2.5 mA cm[公式:见文本] 下的电容从 351.3 mF cm[公式:见文本] 增加到 405.6 mF cm[公式:见文本],单位为 Na2所以4电解液和从 376.3 mF cm[公式:见文本] 到 465.1 mF cm[公式:见文本],以 Li2所以4电解质。导电 TiN 衬底导致 50.7% 的 MnO 高倍率容量保持率2/TiN 和 49.5% 为 Na[公式:见正文]MnO2/TiN 当电流密度从 0.5 mA cm[公式:见正文] 增加到 5 mA cm[公式:见正文]。所以,Na[式:见正文]MnO2具有钠离子预嵌入的 /TiN 在 Li 中表现出改进的电容性能2SO4 电解质可以很好地用作有前途的超级电容器电极。
更新日期:2020-10-15
down
wechat
bug