当前位置: X-MOL 学术Energy Fuels › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Transport of Shale Gas in Microporous/Nanoporous Media: Molecular to Pore-Scale Simulations
Energy & Fuels ( IF 5.2 ) Pub Date : 2020-11-25 , DOI: 10.1021/acs.energyfuels.0c03276
Hao Yu 1 , HengYu Xu 1 , JingCun Fan 1 , Yin-Bo Zhu 1 , FengChao Wang 1 , HengAn Wu 1
Affiliation  

As the typical unconventional reservoir, shale gas is believed to be the most promising alternative for the conventional resources in future energy patterns, attracting more and more attention throughout the world. Generally, the majority of shale gas is trapped within the tight shale rock with ultralow porosity (<10%) and ultrasmall pore size (as less as several nanometers). Thus, the accurate understanding of gas transport characteristic and its underlying mechanism through these microporous/nanoporous media is critical for the effective exploitation of shale reservoir. In this context, we present a comprehensive review on the current advances of multiscale transport simulations of shale gas in microporous/nanoporous media from molecular to pore-scale. For the gas transport in shale nanopores using molecular dynamics (MD) simulations, the structure and force parameters of various nanopore models, including organic models (graphene, carbon nanotubes, and kerogen) and inorganic models (clays, carbonate, and quartz), and flow simulation strategies (such as nonequilibrium molecular dynamics (NEMD) and Grand Canonical Monte Carlo simulations) are systematically introduced and clarified. The significant MD simulation results about gas transport characteristic in shale nanopores then are elaborated respectively for different factors, including pore size, ambient pressure, nanopore type, atomistic roughness, and pore structure, as well as multicomponent. Besides, the two-phase transport characteristic of gas and water is also discussed, considering the ubiquity of water in shale formation. For the lattice Boltzmann method (LBM) and pore network model (PNM) approaches to conduct pore-scale simulations, we briefly review its origins, modifications, and applications for gas transport simulations in a microporous/nanoporous shale matrix. Particularly, the upscaling methods to incorporate MD simulation into LBM and PNM frameworks are emphatically expounded in the light of recent attempts of MD-based pore-scale simulations. It is hoped that this Review would be helpful for the readers to build a systematical overview on the transport characteristic of shale gas in microporous/nanoporous media and subsequently accelerate the development of the shale industry.

中文翻译:

页岩气在微孔/纳孔介质中的传输:分子到孔径的模拟。

作为典型的非常规油藏,在未来的能源格局中,页岩气被认为是常规资源的最有希望的替代品,在全世界引起越来越多的关注。通常,大多数页岩气被捕集在致密的页岩中,该页岩具有超低的孔隙度(<10%)和超小的孔径(小于几纳米)。因此,通过这些微孔/纳孔介质准确地了解天然气的输运特征及其潜在机理对于页岩储层的有效开采至关重要。在此背景下,我们对页岩气在微孔/纳米孔介质中从分子尺度到孔隙尺度的多尺度输运模拟的最新进展进行了全面的综述。对于使用分子动力学(MD)模拟的页岩纳米孔中的气体传输,各种纳米孔模型的结构和力参数,包括有机模型(石墨烯,碳纳米管和干酪根)和无机模型(粘土,碳酸盐和石英),以及流动模拟策略(例如非平衡分子动力学(NEMD)和大规范系统地介绍和阐明了蒙特卡洛模拟)。然后分别针对不同的因素,包括孔径,环境压力,纳米孔类型,原子粗糙度,孔隙结构以及多组分等因素,详细阐述了页岩纳米孔中天然气运移特征的重要MD模拟结果。此外,还考虑了页岩气中水的普遍存在,讨论了气水两相输运特性。对于进行孔隙尺度模拟的点阵玻尔兹曼方法(LBM)和孔网络模型(PNM)方法,我们简要回顾了其在微孔/纳米孔页岩基质中的运移模拟的起源,改进和应用。特别地,根据基于MD的孔尺度模拟的最新尝试,着重阐述了将MD模拟合并到LBM和PNM框架中的升级方法。希望这篇评论对读者有帮助,对页岩气在微孔/纳米孔介质中的传输特征进行系统的概述,从而促进页岩工业的发展。根据基于MD的孔尺度模拟的最新尝试,着重阐述了将MD模拟纳入LBM和PNM框架的升级方法。希望这篇评论对读者有帮助,对页岩气在微孔/纳米孔介质中的传输特征进行系统的概述,从而促进页岩工业的发展。根据基于MD的孔尺度模拟的最新尝试,着重阐述了将MD模拟纳入LBM和PNM框架的升级方法。希望这篇评论对读者有帮助,对页岩气在微孔/纳米孔介质中的传输特征进行系统的概述,从而促进页岩工业的发展。
更新日期:2021-01-21
down
wechat
bug