当前位置: X-MOL 学术ACS Nano › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Materials Combining Asymmetric Pore Structures with Well-Defined Mesoporosity for Energy Storage and Conversion
ACS Nano ( IF 17.1 ) Pub Date : 2020-11-25 , DOI: 10.1021/acsnano.0c05903
Sarah A. Hesse 1, 2 , Kevin E. Fritz 1 , Peter A. Beaucage 1, 3 , R. Paxton Thedford 1, 4 , Fei Yu 1, 2 , Francis J. DiSalvo 2 , Jin Suntivich 1, 5 , Ulrich Wiesner 1
Affiliation  

Porous materials design often faces a trade-off between the requirements of high internal surface area and high reagent flux. Inorganic materials with asymmetric/hierarchical pore structures or well-defined mesopores have been tested to overcome this trade-off, but success has remained limited when the strategies are employed individually. Here, the attributes of both strategies are combined and a scalable path to porous titanium nitride (TiN) and carbon membranes that are conducting (TiN, carbon) or superconducting (TiN) is demonstrated. These materials exhibit a combination of asymmetric, hierarchical pore structures and well-defined mesoporosity throughout the material. Fast transport through such TiN materials as an electrochemical double-layer capacitor provides a substantial improvement in capacity retention at high scan rates, resulting in state-of-the-art power density (28.2 kW kg–1) at competitive energy density (7.3 W-h kg–1). In the case of carbon membranes, a record-setting power density (287.9 kW kg–1) at 14.5 W-h kg–1 is reported. Results suggest distinct advantages of such pore architectures for energy storage and conversion applications and provide an advanced avenue for addressing the trade-off between high-surface-area and high-flux requirements.

中文翻译:

结合非对称孔结构和定义良好的中孔性的材料,用于能量存储和转换

多孔材料设计通常需要在高内表面积和高试剂通量之间进行权衡。已经测试了具有不对称/分层孔隙结构或定义明确的中孔的无机材料,以克服这种折衷,但是当单独使用这些策略时,成功仍然有限。在这里,两种策略的属性相结合,并展示了通向多孔氮化钛(TiN)和导电(TiN,碳)或超导(TiN)的碳膜的可扩展路径。这些材料在整个材料中均表现出不对称,分层的孔结构和定义明确的中孔性的组合。通过诸如电化学双层电容器之类的TiN材料的快速运输大大提高了高扫描速率下的容量保持率,–1)在竞争能量密度(7.3 Wh kg –1)下。对于碳膜,据报道功率密度为14.5 Wh kg –1时达到创纪录的功率密度(287.9 kW kg –1)。结果表明,这种孔结构在能量存储和转换应用中具有明显的优势,并为解决高表面积和高通量要求之间的权衡问题提供了先进的途径。
更新日期:2020-12-22
down
wechat
bug