当前位置: X-MOL 学术SIAM J. Matrix Anal. Appl. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The GSVD: Where are the Ellipses?, Matrix Trigonometry, and More
SIAM Journal on Matrix Analysis and Applications ( IF 1.5 ) Pub Date : 2020-01-01 , DOI: 10.1137/18m1234412
Alan Edelman , Yuyang Wang

This paper provides an advanced mathematical theory of the Generalized Singular Value Decomposition (GSVD) and its applications. We explore the geometry of the GSVD which provides a long sought for ellipse picture which includes a horizontal and a vertical multiaxis. We further propose that the GSVD provides natural coordinates for the Grassmann manifold. This paper proves a theorem showing how the finite generalized singular values do or do not relate to the singular values of $AB^\dagger$. We then turn to the applications arguing that this geometrical theory is natural for understanding existing applications and recognizing opportunities for new applications. In particular the generalized singular vectors play a direct and as natural a mathematical role for certain applications as the singular vectors do for the SVD. In the same way that experts on the SVD often prefer not to cast SVD problems as eigenproblems, we propose that the GSVD, often cast as a generalized eigenproblem, is rather best cast in its natural setting. We illustrate this theoretical approach and the natural multiaxes (with labels from technical domains) in the context of applications where the GSVD arises: Tikhonov regularization (unregularized vs regularization), Genome Reconstruction (humans vs yeast), Signal Processing (signal vs noise), and stastical analysis such as ANOVA and discriminant analysis (between clusters vs within clusters.) With the aid of our ellipse figure, we encourage in the future the labelling of the natural multiaxes in any GSVD problem.

中文翻译:

GSVD:椭圆在哪里?、矩阵三角等

本文提供了广义奇异值分解 (GSVD) 及其应用的高级数学理论。我们探索了 GSVD 的几何形状,它提供了长期寻找的椭圆图片,其中包括水平和垂直多轴。我们进一步建议 GSVD 为 Grassmann 流形提供自然坐标。本文证明了一个定理,表明有限广义奇异值如何与 $AB^\dagger$ 的奇异值相关或不相关。然后我们转向应用程序,认为这种几何理论对于理解现有应用程序和识别新应用程序的机会是很自然的。特别是,广义奇异向量对某些应用起着直接和自然的数学作用,就像奇异向量对 SVD 所做的那样。与 SVD 专家通常不喜欢将 SVD 问题转化为特征问题一样,我们建议通常将其转化为广义特征问题的 GSVD 最好在其自然环境中进行转化。我们在 GSVD 出现的应用环境中说明了这种理论方法和自然多轴(带有技术领域的标签):Tikhonov 正则化(非正则化 vs 正则化)、基因组重建(人类 vs 酵母)、信号处理(信号 vs 噪声)、和统计分析,例如方差分析和判别分析(集群之间与集群内)。借助我们的椭圆图,我们鼓励将来在任何 GSVD 问题中标记自然多轴。通常作为广义特征问题进行转换,最好在其自然环境中进行转换。我们在 GSVD 出现的应用环境中说明了这种理论方法和自然多轴(带有技术领域的标签):Tikhonov 正则化(非正则化 vs 正则化)、基因组重建(人类 vs 酵母)、信号处理(信号 vs 噪声)、和统计分析,例如方差分析和判别分析(集群之间与集群内)。借助我们的椭圆图,我们鼓励将来在任何 GSVD 问题中标记自然多轴。通常作为广义特征问题进行转换,最好在其自然环境中进行转换。我们在 GSVD 出现的应用环境中说明了这种理论方法和自然多轴(带有技术领域的标签):Tikhonov 正则化(非正则化 vs 正则化)、基因组重建(人类 vs 酵母)、信号处理(信号 vs 噪声)、和统计分析,例如方差分析和判别分析(集群之间与集群内)。借助我们的椭圆图,我们鼓励将来在任何 GSVD 问题中标记自然多轴。
更新日期:2020-01-01
down
wechat
bug