当前位置: X-MOL 学术Adv. Funct. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Robust High‐Temperature Supercapacitors Based on SiC Nanowires
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2020-11-25 , DOI: 10.1002/adfm.202008901
Xiaoxiao Li 1 , Weijun Li 2 , Qiao Liu 2 , Shanliang Chen 2 , Lin Wang 2 , Fengmei Gao 2 , Gang Shao 3 , Yun Tian 1 , Zifeng Lin 4 , Weiyou Yang 2
Affiliation  

Currently, the exploration of energy conversion/storage devices for high‐temperature operation with desired stability is still a grand challenge. In the present work, the high‐temperature supercapacitors (SCs) based on SiC nanowires as the electrode materials are reported, which are synthesized via pyrolysis of polymeric precursors followed by etching for creating more active sites with enhanced surface area. In 2.0 m KCl aqueous electrolyte, the as‐fabricated electrode based on etched SiC nanowires delivers a specific capacitance of 23.6 mF cm–2 (29.5 F g–1) at a current density of 0.2 mA cm–2 (0.25 A g–1), which is ≈3.3 times to that of the counterpart without etching (7.19 mF cm–2). The as‐constructed ionic‐liquid‐based SCs can endure the operation temperatures up to 150 °C with a capacitance retention of 80% for 10 000 cycles, which drops only ≈6% in comparison to that at 0 °C. Even under progressive variation in temperatures ranged between 0 and 150 °C, the capacitance retentions keep higher than 76% for 12 000 cycles, representing their promising to be serviced as robust SCs against high‐temperature harsh conditions for energy storage.

中文翻译:

基于SiC纳米线的坚固耐用的高温超级电容器

当前,探索用于具有期望的稳定性的高温操作的能量转换/存储装置仍然是巨大的挑战。在当前的工作中,报道了基于SiC纳米线作为电极材料的高温超级电容器(SC),该超级电容器是通过对聚合物前驱体进行热解,然后进行蚀刻以创建表面积更大的活性位点而合成的。在2.0  m KCl的水性电解质中,基于蚀刻的SiC纳米线的预制电极在0.2 mA cm –2(0.25 A g –1)的电流密度下可提供23.6 mF cm –2(29.5 F g –1)的比电容。),是未经蚀刻的同类产品的≈3.3倍(7.19 mF cm –2)。如此构造的基于离子液体的SC可以承受高达150°C的工作温度,在10 000次循环中的电容保持率为80%,与0°C相比仅降低≈6%。即使在0到150°C的温度变化范围内,其电容保持率在12 000个周期内仍保持高于76%,这表明它们有望作为坚固的SC来应对储能的高温苛刻条件。
更新日期:2020-11-25
down
wechat
bug