当前位置: X-MOL 学术J. Taiwan Inst. Chem. E. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
3D nanoporous hybrid nanoflower for enhanced non-faradaic redox-free electrochemical impedimetric biodetermination
Journal of the Taiwan Institute of Chemical Engineers ( IF 5.7 ) Pub Date : 2020-11-25 , DOI: 10.1016/j.jtice.2020.11.006
Indra Gandi Subramani , Veeradasan Perumal , Subash C.B. Gopinath , Norani Muti Mohamed , Nirav Joshi , Mark Ovinis , Lim Li Sze

Recently, non-faradaic electrochemical impedimetric (nfEIS) has been identified as a dynamic and robust method for bio-determining. However, the success of a nfEIS approach largely depends on its sensing layer architecture. In this study, the use of a Glutaraldehyde (GA) crosslinked copper (Cu) – bovine serum albumin (BSA) hybrid nanoflower with three-dimensional nanoporous architecture for the sensing layer was investigated. The nanoflower morphology changes were observed under FESEM, revealing loosely interlaced nanoflower into a tightly interlaced, highly porous structure upon GA crosslinking. This nanoflower was hybridized to immobilize aminated-DNA probe on the transducer surface and detect the target TB DNA in their natural redox-free environment. FTIR and XPS characterization showed distinct peaks at 950–1100 cm−1 (P-O, P=O bonds from nanoflower and DNA backbone) and 286.48 eV (interaction between BSA and aminated DNA), respectively, validating the successful DNA probe immobilization on the nanoflower surface. Furthermore, impedimetric sensing in a redox-free environment showed that the developed TB biosensor present has a detection limit (LOD) of 60 pM with a (linear) range from 1 pM to 1 µM with good reproducibility. This redox-free non-faradaic EIS offers excellent biosensing potential and may be extended for diagnosing other biomarkers in clinical practice.



中文翻译:

用于增强的非法拉第无氧化还原电化学阻抗生物测定的3D纳米多孔杂化纳米花

近来,非法拉第电化学阻抗法(nfEIS)已被确定为一种动态而强大的生物测定方法。但是,nfEIS方法的成功很大程度上取决于其传感层架构。在这项研究中,研究了使用具有三维纳米多孔结构的戊二醛(GA)交联铜(Cu)-牛血清白蛋白(BSA)杂合纳米花作为传感层的用途。在FESEM下观察到纳米花的形态变化,表明在GA交联后,松散交织的纳米花变成紧密交织的,高度多孔的结构。将该纳米花杂交以将胺化DNA探针固定在换能器表面上,并在其天然无氧化还原环境中检测目标TB DNA。FTIR和XPS表征在950–1100 cm -1处显示出明显的峰(来自纳米花和DNA主链的PO,P = O键)和286.48 eV(BSA与胺化的DNA之间的相互作用)分别验证了DNA探针在纳米花表面上的成功固定。此外,在无氧化还原环境中的阻抗感测表明,目前开发的TB生物传感器的检测极限(LOD)为60 pM,(线性)范围为1 pM至1 µM,具有良好的重现性。这种无氧化还原的非法拉第EIS具有出色的生物传感潜力,并且可以扩展到在临床实践中诊断其他生物标记物。

更新日期:2020-12-08
down
wechat
bug