当前位置: X-MOL 学术Int. J. Heat Mass Transf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enhanced flow boiling in microchannels by incorporating multiple micro-nozzles and micro-pinfin fences
International Journal of Heat and Mass Transfer ( IF 5.2 ) Pub Date : 2021-02-01 , DOI: 10.1016/j.ijheatmasstransfer.2020.120695
Wenming Li , Jiaxuan Ma , Chen Li

Abstract Phase-change heat transfer is a promising approach for high-power electronics cooling. However, the chaotic two-phase transport and dominant laminar flow in microchannels inhibits flow boiling performance. Thus, the ability to coordinate the two-phase transport in a highly favorable fashion would be highly desired. In this study, a new microchannel configuration by incorporating capillary micro-pinfin fences and multiple micro-nozzles has been proposed to sustain thin liquid film evaporation, promote mixing and global liquid supply simultaneously. A new boundary layer covered with thin liquid film is activated by the capillary micro-pinfin fences along the sidewalls of the channel. Additionally, the sustainable thin liquid film is maintained using capillary effect, which can promote the capillary-driven flow inside the gap between micro-pinfin fences and the sidewalls. As a result, significantly enhanced flow boiling has been achieved on both DI-water and HFE-7100. A critical heat flux (CHF) up to 944 W/cm2 has been demonstrated using DI-water at a mass velocity of 600 kg/m2 s, accounting for a 43% enhancement compared to the configuration of multiple micro-nozzles without capillary micro-pinfin fences. Compared to the base configuration of plain wall microchannels, the enhancement of CHF is over threefold at a mass velocity of 389 kg/m2s. Equally important, this new microchannel configuration works well on dielectric fluids, which is challenging to promote CHF due to their unfavorable thermophysical properties. A CHF of 287 W/cm2 with a noticeable enhancement of 56% has been achieved at a mass velocity of 2772 kg/m2 s on HFE-7100 at room temperature. Moreover, the enhancements of heat transfer coefficient (HTC) on HFE-7100 are more noticeable compared to that of DI-water. For example, 120% higher HTC at a moderate mass velocity of 693 kg/m2 s has been realized. All the enhancements are achieved without the escalating pressure drop.

中文翻译:

通过结合多个微喷嘴和微针鳍围栏增强微通道中的流动沸腾

摘要 相变传热是一种很有前途的大功率电子冷却方法。然而,微通道中的混沌两相传输和主导层流抑制了流动沸腾性能。因此,非常需要以非常有利的方式协调两相传输的能力。在这项研究中,提出了一种通过结合毛细管微针鳍围栏和多个微喷嘴的新微通道配置来维持薄液膜蒸发,同时促进混合和整体液体供应。沿通道侧壁的毛细管微针鳍栅栏激活了覆盖有薄液膜的新边界层。此外,利用毛细管效应维持可持续的薄液膜,这可以促进微针鳍围栏和侧壁之间的间隙内的毛细管驱动流动。因此,去离子水和 HFE-7100 均实现了显着增强的流动沸腾。使用质量速度为 600 kg/m2 s 的去离子水证明了高达 944 W/cm2 的临界热通量 (CHF),与没有毛细管微喷嘴的多个微喷嘴配置相比,提高了 43%。针鳍围栏。与普通壁微通道的基本配置相比,在 389 kg/m2s 的质量速度下,CHF 的增强超过三倍。同样重要的是,这种新的微通道配置适用于介电流体,由于其不利的热物理特性,这对促进 CHF 具有挑战性。在室温下在 HFE-7100 上以 2772 kg/m2 s 的质量速度实现了 287 W/cm2 的 CHF,显着提高了 56%。此外,与去离子水相比,HFE-7100 的传热系数 (HTC) 的增强更为明显。例如,在 693 kg/m2 s 的中等质量速度下,HTC 提高了 120%。所有的增强都在没有不断升级的压降的情况下实现。
更新日期:2021-02-01
down
wechat
bug