当前位置: X-MOL 学术Shock Waves › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effect of hydroxyl radical precursor addition on LTC-affected detonation in DME–$$\hbox {O}_{{2}}$$–$$\hbox {CO}_{{2}}$$ mixtures
Shock Waves ( IF 2.2 ) Pub Date : 2020-11-01 , DOI: 10.1007/s00193-020-00974-9
Y. Z. He , R. Mével

The effects of hydrogen peroxide ( $$\hbox {H}_{2}\hbox {O}_{2}$$ ) and tert-butyl hydroperoxide (TBHP), both hydroxyl radical precursors, on the characteristic length-scales of low-temperature-chemistry-affected (LTC-affected) detonation propagating in dimethyl-ether–oxygen–carbon-dioxide (DME– $$\hbox {O} _{2}$$ – $$\hbox {CO}_{2}$$ ) mixtures were investigated using the Zeldovich–von Neumann–Doring model. A three-step energy release is observed when the $$\hbox {CO}_{2}$$ content is above a critical value, with and without $$\hbox {H}_{2}\hbox {O}_{2}$$ or TBHP addition. The effect of these two additives on the energy release dynamics and chemical kinetics has been analyzed in detail. The $$\hbox {H}_{2}\hbox {O} _{2}$$ addition induces a similar reduction of the different induction zone lengths, as well as an increase of the energy release rate. The addition of TBHP induces both a thermal and a chemical effect. Thermally, since the effective equivalence ratios of the mixtures are higher, higher Mach numbers and higher von Neumann temperatures are achieved. Chemically, an “LTC chain propagation loop” leads to a significant decrease of the induction zone length along with a substantial increase of the energy release rate, especially for the first stage of energy release. Hence, TBHP seems to be a promising additive for experimentally observing LTC-affected detonation with multi-stage energy release.

中文翻译:

添加羟基自由基前体对 DME–$$\hbox {O}_{{2}}$$–$$\hbox {CO}_{{2}}$$ 混合物中 LTC 影响爆炸的影响

过氧化氢 ( $$\hbox {H}_{2}\hbox {O}_{2}$$ ) 和叔丁基过氧化氢 (TBHP),这两种羟基自由基前体,对特征长度尺度的影响在二甲醚-氧气-二氧化碳 (DME– $$\hbox {O} _{2}$$ – $$\hbox {CO}_{) 中传播的低温化学影响(LTC 影响)爆炸2}$$ ) 混合物使用 Zeldovich-von Neumann-Doring 模型进行研究。当 $$\hbox {CO}_{2}$$ 含量高于临界值时,观察到三步能量释放,有和没有 $$\hbox {H}_{2}\hbox {O}_ {2}$$ 或 TBHP 添加。详细分析了这两种添加剂对能量释放动力学和化学动力学的影响。$$\hbox {H}_{2}\hbox {O} _{2}$$ 的添加导致不同感应区长度的类似减少,以及能量释放率的增加。TBHP 的添加会引起热效应和化学效应。在热学方面,由于混合物的有效当量比更高,因此可以获得更高的马赫数和更高的冯诺依曼温度。在化学上,“LTC 链增长回路”导致诱导区长度显着减小,同时能量释放速率显着增加,尤其是在能量释放的第一阶段。因此,TBHP 似乎是一种很有前途的添加剂,可用于实验观察受 LTC 影响的多级能量释放爆炸。“LTC 链传播回路”导致诱导区长度显着减小,同时能量释放速率显着增加,特别是对于能量释放的第一阶段。因此,TBHP 似乎是一种很有前途的添加剂,可用于实验观察受 LTC 影响的多级能量释放爆炸。“LTC 链传播回路”导致诱导区长度显着减小,同时能量释放速率显着增加,特别是对于能量释放的第一阶段。因此,TBHP 似乎是一种很有前途的添加剂,可用于实验观察受 LTC 影响的多级能量释放爆炸。
更新日期:2020-11-01
down
wechat
bug