当前位置: X-MOL 学术BMC Microbiol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Microbiology research at the systems biology and bioinformatics - 2019 (SBB-2019) school
BMC Microbiology ( IF 4.0 ) Pub Date : 2020-11-24 , DOI: 10.1186/s12866-020-02038-5
Yuriy L Orlov 1, 2, 3, 4 , Alexander N Ignatov 3, 5 , Elvira R Galieva 2 , Oxana B Dobrovolskaya 3, 4
Affiliation  

This Special Issue of BMC Microbiology “Systems Biology and Bioinformatics” presents the materials discussed at the 11-th Young Scientists School “Systems Biology and Bioinformatics”-2019 (SBB-2019) in Novosibirsk, Russia (http://conf.bionet.nsc.ru/sbb2019/en/). These Young Scientists’ Schools on bioinformatics have been organized every year since 2008 by the Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences and Novosibirsk State University [1, 2]. To accompany this Special Issue on microbiology, parallel special journal issues in the fields of genomics, bioinformatics, and medical genomics were published as a part of SBB-2019 series in BioMed Central journals: BMC Genomics, BMC Medical Genomics, BMC Genetics, BMC Medical Genetics, and BMC Bioinformatics (https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-21-supplement-11). The SBB Schools in Novosibirsk are satellite training meetings for young scientists and PhD students, which are organized either as satellite events for BGRS\SB (Bioinformatics of Genome Regulation and Structure \ Systems Biology) conferences series [3, 4] or as independent events [2, 5]. The Schools were accompanied and complemented by the publication of special journal issues in BMC Microbiology [6] and other BioMed Central journals [3, 4].

This special issue contains the study by S.E. Peltek and co-authors [7] describing microbial life habitats in unique volcano caldera environment.

The caldera of the Uzon Volcano (Kamchatka Peninsula, Russia) is a region with active hydrothermal activity, which contains outlets of unique natural hydrothermal petroleum [8] with distinct microbiota. Hydrothermal petroleum is the oil found in natural outlets within active hydrothermal fields [8, 9]. According to carbon 14C dating, hydrothermal petroleum from various regions of the Earth is modern in geological scale, with the oldest sample being 29,000 years old [10]. The Uzon petroleum is the youngest on Earth, with the initial time estimate at 1000 years, and later found to be only 50 years old [11].

The composition of the Uzon oil was investigated in several studies [12]. Uzon oil has a unique make-up, with low proportion of heavy fractions and relatively high content of saturated hydrocarbons [11]. Correspondingly, the microbial communities of the “oil site” have diverse composition profiles, living at almost boiling temperatures (up to 97 °C), significant oscillations of pH, and high content of sulfides, arsenic, antimony, and mercury in water.

In this journal issue, Peltek et al. [7] analyzed the composition, structure, unique genetic features and the metabolic pathways of the microbial communities at the oil site. The authors present evidence of diverse metabolic pathways of hydrocarbon degradation by microorganisms being operational within the local microbiota. Interestingly, the authors found statistically significant relationships between geochemical parameters, taxonomic composition and the completeness of metabolic pathways [7]. Metabolic pathways of hydrocarbon oxidation were found to prevail in the studied communities, which corroborated the hypothesis on abiogenic synthesis of Uzon hydrothermal petroleum.

In previous research, the majority of the studied oil sites contained representatives of Actinomycetales (Actinobacteria). Typically, the geochemical parameters defined the structure and metabolic potential of microbial communities. This is confirmed by the genome sequence of Anoxybacillus flavithermus KU2–6-11 isolated from hot-spring in Uzon caldera, which was published recently [13]. Other prior work includes the microbial community analysis of the Uzon caldera springs, which was presented earlier at the BMC special journal issues accompanying a previous BGRS conference in 2014 [14]. The same researchgroup, A.V. Bryanskaya et al., published description of environmental factors for the composition of microbial communities of saline lakes in BMC Microbiology special issue [15]. While this journal issue has been in preparation, novel thermophilic Aeribacillus bacteriophage AP45 was isolated from the Kamchatka [16] as well as a thermophilic bacterium Geobacillus icigianus [17].

Going back to the BGRS post-conference issues, we would like to note fundamental systems biology work by late Dr. Vitaly A. Likhoshvai on the mathematical modeling of metabolic systems in Escherichia coli cells, which was published in BMC Microbiology [6]. This research showed that the modeling of relevant environmental factors can increase a heuristic value of a genomic study of the microbial communities. The manuscript by V.A.Likhoshvai, which has been finalized by his co-authors, was published in the parallel BMC Bioinformatics special issue after SBB-2019 School [18]. Here it is also appropriate to refer to the recent publication by V.A. Likhoshvai on dynamical model of non-inherited antibiotic tolerance of microorganisms [19].

We aim to support international exchanges and education in bioinformatics and systems biology in the forms of the Schools for young scientists and make new results open keeping traditions of the BGRS conference series [1, 2, 5, 20].

  1. 1.

    Baranova AV, Orlov YL. The papers presented at 7th young scientists school “systems biology and bioinformatics” (SBB’15): introductory note. BMC Genet. 2016;17:S20. https://doi.org/10.1186/s12863-015-0326-5.

    Article Google Scholar

  2. 2.

    Orlov YL, Tatarinova TV, Zakhartsev MV, Kolchanov NA. Introduction to the 9th young scientists school on systems biology and bioinformatics (SBB'2017). J Bioinforma Comput Biol. 2018;16(1):1802001. https://doi.org/10.1142/S0219720018020018.

    Article Google Scholar

  3. 3.

    Tatarinova TV, Chen M, Orlov YL. Bioinformatics research at BGRS-2018. BMC Bioinformatics. 2019;20:33. https://doi.org/10.1186/s12859-018-2566-7.

    Article PubMed PubMed Central Google Scholar

  4. 4.

    Orlov YL, Galieva ER, Melerzanov AV. Computer genomics research at the bioinformatics conference series in Novosibirsk. BMC Genomics. 2019;20(Suppl 7):537. https://doi.org/10.1186/s12864-019-5846-3.

    Article PubMed PubMed Central Google Scholar

  5. 5.

    Orlov YL, Galieva ER, Tatarinova TV. Bioinformatics research at SBB-2019. BMC Bioinformatics. 2020;21(Suppl 11):366. https://doi.org/10.1186/s12859-020-03712-1.

    Article PubMed PubMed Central Google Scholar

  6. 6.

    Khlebodarova TM, Ree NA, Likhoshvai VA. On the control mechanisms of the nitrite level in Escherichia coli cells: the mathematical model. BMC Microbiol. 2016;16(Suppl 1):7. https://doi.org/10.1186/s12866-015-0619-x.

    CAS Article PubMed PubMed Central Google Scholar

  7. 7.

    Peltek SE, Bryanskaya AV, Uvarova YE, Rozanov AS, Ivanisenko TV, Ivanisenko VA, Lazareva EV, Saik OV, Efimov VM, Zhmodik SM, Taran OP, Slynko NM, Shekhovtsov SV, Parmon VN, Dobretsov NL, Kolchanov NA. Young «oil site» of the Uzon Caldera as a habitat for unique microbial life. BMC Microbiol. 2020;20(Suppl 2). https://doi.org/10.1186/s12866-020-02012-1.

  8. 8.

    Dobretsov NL, Lazareva EV, Zhmodik SM, Bryanskaya AV, Morozova VV, Tikunova NV, et al. Geological, hydrogeochemical, and microbiological characteristics of the oil site of the Uzon caldera (Kamchatka). Russ Geol Geophys. 2015;56(1–2):39–63.

    Article Google Scholar

  9. 9.

    Didyk BM, Simoneit BRT. Hydrothermal oil of Guaymas Basin and implications for petroleum formation mechanisms. Nature. 1989;342(6245):65–8. https://doi.org/10.1038/342065a0.

    CAS Article Google Scholar

  10. 10.

    Simoneit BRT, Kvenvolden KA. Comparison of 14C ages of hydrothermal petroleums. Org Geochem. 1994;21(5):525–9. https://doi.org/10.1016/0146-6380(94)90103-1.

    CAS Article Google Scholar

  11. 11.

    Varfolomeev SD, Karpov GA, Synal H-A, Lomakin SM, Nikolaev EN. The youngest natural oil on earth. Dokl Chem. 2011;438(1):144–7. https://doi.org/10.1134/S0012500811050053.

    CAS Article Google Scholar

  12. 12.

    Galimov EM, Sevast’yanov VS, Karpov GA, Kamaleeva AI, Kuznetsova OV, Konopleva IV, Vlasova LN. Hydrocarbons from a volcanic area. Oil seeps in the Uzon caldera, Kamchatka. Geochem Int. 2015;53:1019–27. https://doi.org/10.1134/S0016702915120046.

    CAS Article Google Scholar

  13. 13.

    Rozanov AS, Korzhuk AV, Bryanskaya AV, Peltek SE. Draft genome sequence of Anoxybacillus flavithermus KU2-6-11 isolated from hot-spring in Uzon caldera (Kamchatka, Russia). Data Brief. 2017;16:758–61. https://doi.org/10.1016/j.dib.2017.11.095.

    Article PubMed PubMed Central Google Scholar

  14. 14.

    Rozanov AS, Bryanskaya AV, Malup TK, Meshcheryakova IA, Lazareva EV, Taran OP, Ivanisenko TV, Ivanisenko VA, Zhmodik SM, Kolchanov NA, Peltek SE. Molecular analysis of the benthos microbial community in Zavarzin thermal spring (Uzon Caldera, Kamchatka, Russia). BMC Genomics. 2014;15(Suppl 12):S12. https://doi.org/10.1186/1471-2164-15-S12-S12.

    Article PubMed PubMed Central Google Scholar

  15. 15.

    Bryanskaya AV, Malup TK, Lazareva EV, Taran OP, Rozanov AS, Efimov VM, Peltek SE. The role of environmental factors for the composition of microbial communities of saline lakes in the Novosibirsk region (Russia). BMC Microbiol. 2016;16:S4. https://doi.org/10.1186/s12866-015-0618-y.

    CAS Article Google Scholar

  16. 16.

    Morozova V, Bokovaya O, Kozlova Y, Kurilshikov A, Babkin I, Tupikin A, Bondar A, Ryabchikova E, Brayanskaya A, Peltek S, Tikunova N. A novel thermophilic Aeribacillus bacteriophage AP45 isolated from the valley of geysers, Kamchatka: genome analysis suggests the existence of a new genus within the Siphoviridae family. Extremophiles. 2019;23(5):599–612. https://doi.org/10.1007/s00792-019-01119-2.

    CAS Article PubMed Google Scholar

  17. 17.

    Kulyashov M, Peltek SE, Akberdin IR. A genome-scale metabolic MODEL of 2,3-butanediol production by thermophilic Bacteria Geobacillus icigianus. Microorganisms. 2020;8(7):E1002. https://doi.org/10.3390/microorganisms8071002.

    Article PubMed Google Scholar

  18. 18.

    Likhoshvai VA, Golubyatnikov VP, Khlebodarova TM. Limit cycles in models of circular gene networks regulated by negative feedback loops. BMC Bioinformatics. 2020;21(Suppl 11):255. https://doi.org/10.1186/s12859-020-03598-z.

    CAS Article PubMed PubMed Central Google Scholar

  19. 19.

    Khlebodarova TM, Likhoshvai VA. Molecular mechanisms of non-inherited antibiotic tolerance in Bacteria and Archaea. Mol Biol (Mosk). 2019;53(4):531–40. (In Russian). https://doi.org/10.1134/S0026898419040050.

    CAS Article Google Scholar

  20. 20.

    Orlov YL, Voropaeva EN, Chen M, Baranova AV. Medical genomics at the systems biology and bioinformatics (SBB-2019) school. BMC Med Genet. 2020;13(Suppl 8):127. https://doi.org/10.1186/s12920-020-00786-x.

    Article Google Scholar

Download references

We thank Prof. T.V. Tatarinova and A.V. Baranova for the editorial work on SBB-2019 journal issues. We are grateful to Academician N.A. Kolchanov for the organization of the “Systems Biology and Bioinformatics”-2019 School in Novosibirsk, Russia. We thank Dr. O. Tolmachov for the help with the manuscript preparation.

The publication has been prepared with the support of the RUDN University Program 5-100 (Recipients: YO, AI, OD).

About this supplement

This article has been published as part of BMC Microbiology Volume 20 Supplement 2, 2020: Selected Topics in “Systems Biology and Bioinformatics” - 2019: microbiology. The full contents of the supplement are available online at - https://bmcmicrobiol.biomedcentral.com/articles/supplements/volume-20-supplement-2.

Publication of this article was not covered by sponsorship.

Affiliations

  1. The Digital Health Institute, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119146, Moscow, Russia

    Yuriy L. Orlov

  2. Novosibirsk State University, 630090, Novosibirsk, Russia

    Yuriy L. Orlov & Elvira R. Galieva

  3. Agrarian and Technological Institute, Peoples’ Friendship University of Russia (RUDN University), 117198, Moscow, Russia

    Yuriy L. Orlov, Alexander N. Ignatov & Oxana B. Dobrovolskaya

  4. Institute of Cytology and Genetics SB RAS, 630090, Novosibirsk, Russia

    Yuriy L. Orlov & Oxana B. Dobrovolskaya

  5. PhytoEngineering R&D Centre, 141880, Moscow Region, Moscow, Russia

    Alexander N. Ignatov

Authors
  1. Yuriy L. OrlovView author publications

    You can also search for this author in PubMed Google Scholar

  2. Alexander N. IgnatovView author publications

    You can also search for this author in PubMed Google Scholar

  3. Elvira R. GalievaView author publications

    You can also search for this author in PubMed Google Scholar

  4. Oxana B. DobrovolskayaView author publications

    You can also search for this author in PubMed Google Scholar

Contributions

YO is guest editor of SBB-2019 issues. AI, EG and OD are the invited editors and the organizing committee members. All the authors read, revised and approved the final manuscript.

Authors’ information

Yuriy L. Orlov, the conference organizer and guest editor of the SBB-2019 special issues orlov@d-health.institute.

Elvira R. Galieva, organizing committee member.

Alexander N. Ignatov, organizing committee member.

Oxana B. Dobrovolskaya, organizing committee member.

Corresponding author

Correspondence to Yuriy L. Orlov.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and Permissions

Verify currency and authenticity via CrossMark

Cite this article

Orlov, Y.L., Ignatov, A.N., Galieva, E.R. et al. Microbiology research at the systems biology and bioinformatics - 2019 (SBB-2019) school. BMC Microbiol 20, 348 (2020). https://doi.org/10.1186/s12866-020-02038-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1186/s12866-020-02038-5



中文翻译:

系统生物学和生物信息学的微生物学研究-2019(SBB-2019)学校

BMC微生物学特刊“系统生物学和生物信息学”介绍了在俄罗斯新西伯利亚的第11届青年科学家学校“系统生物学和生物信息学” -2019(SBB-2019)上讨论的材料(http://conf.bionet。 nsc.ru/sbb2019/en/)。自2008年以来,这些年轻的生物信息学青年学院每年都由俄罗斯科学院西伯利亚分校的细胞学和遗传学研究所和新西伯利亚国立大学组织[1,2]。为配合本期微生物学专刊,在BioMed Central期刊上将基因组学,生物信息学和医学基因组学领域的平行专刊作为SBB-2019系列的一部分出版:BMC Genomics,BMC Medical Genomics,BMC Genetics,BMC Medical遗传学和BMC生物信息学(https://bmcbioinformatics.biomedcentral。com / articles / supplements / volume-21-supplement-11)。新西伯利亚的SBB学校是面向年轻科学家和博士生的卫星培训会议,既可以作为BGRS \ SB(基因组调控和结构\系统生物学的生物信息学)会议系列[3,4]的卫星活动,也可以作为独立活动[ 2,5]。在BMC微生物学[6]和其他BioMed Central期刊[3,4]上,特殊学校的出版物得到了学校的伴随和补充。

本期特刊包含SE Peltek及其合作者的研究[7],该研究描述了火山独特的火山口环境中的微生物生活栖息地。

Uzon火山的火山口(俄罗斯堪察加半岛)是一个热液活动活跃的地区,其中包含独特的天然热液石油[8]和独特的微生物群落。热液石油是在活跃的热液田中的天然出口发现的油[8,9]。根据碳14 C测年,来自地球各个地区的热液石油在地质规模上是现代的,最古老的样品有29,000年的历史[10]。乌宗石油是地球上最年轻的石油,最初的估计时间为1000年,后来发现只有50年[11]。

在几项研究中对乌松油的成分进行了研究[12]。乌宗石油具有独特的组成,重质馏分的比例低​​,饱和烃含量较高[11]。相应地,“油位”的微生物群落具有多种组成特征,几乎处于沸腾温度(最高97°C),pH值明显波动,水中的硫化物,砷,锑和汞含量很高。

在此期刊中,Peltek等人。[7]分析了油位微生物群落的组成,结构,独特的遗传特征和代谢途径。作者提出了微生物在本地微生物群中运行的烃降解的各种代谢途径的证据。有趣的是,作者发现地球化学参数,分类学组成和代谢途径的完整性之间在统计学上具有显着关系[7]。在所研究的社区中发现了碳氢化合物代谢的代谢途径,这证实了乌松热液石油非生物合成的假说。

在先前的研究中,大多数被研究的油位都包含放线菌(放线菌)的代表。通常,地球化学参数定义了微生物群落的结构和代谢潜能。这由黄杆菌无氧杆菌的基因组序列证实KU2-6-11是最近从乌桑破火山口的温泉中分离出来的[13]。其他先前的工作包括对Uzon破火山口弹簧的微生物群落分析,该分析在2014年上一次BGRS会议的伴随BMC特刊上发表过[14]。同一研究小组AV Bryanskaya等人在BMC Microbiology特刊[15]中发表了有关盐湖微生物群落组成的环境因素的描述。在准备本期杂志时,从堪察加[16]以及嗜热细菌igigbacus icigianus [17]中分离出了新型嗜热航空杆菌噬菌体AP45 。

回到BGRS会议后的问题,我们想指出已故的Vitaly A. Likhoshvai博士对大肠杆菌细胞代谢系统的数学建模的基础系统生物学工作,该工作发表在BMC Microbiology [6]中。这项研究表明,相关环境因素的建模可以增加微生物群落基因组研究的启发式价值。VALikhoshvai的手稿已由他的合著者完成,在SBB-2019学校之后在平行的BMC生物信息学特刊上发表[18]。在这里也有必要参考VA Likhoshvai的最新出版物,即关于非遗传的微生物对抗生素的耐受性的动力学模型[19]。

我们旨在以青年科学家学校的形式,支持生物信息学和系统生物学方面的国际交流和教育,并保持BGRS会议系列的传统[1、2、5、20],从而取得新成果。

  1. 1。

    Baranova AV,Orlov YL。在第七届青年科学家学校“系统生物学和生物信息学”(SBB'15)上发表的论文:介绍性说明。BMC基因。2016; 17:S20。https://doi.org/10.1186/s12863-015-0326-5。

    文章Google学术搜索

  2. 2。

    Orlov YL,Tatarinova TV,Zakhartsev MV,Kolchanov NA。第9届系统生物学和生物信息学青年科学家学校简介(SBB'2017)。生物信息计算机生物学杂志。2018; 16(1):1802001。https://doi.org/10.1142/S0219720018020018。

    文章Google学术搜索

  3. 3。

    塔塔里诺瓦电视台,陈敏,奥尔洛夫(YL)。BGRS-2018上的生物信息学研究。BMC生物信息学。2019; 20:33。https://doi.org/10.1186/s12859-018-2566-7。

    文章PubMed PubMed Central Google学术搜索

  4. 4。

    Orlov YL,Galieva ER,Melerzanov AV。在新西伯利亚举行的生物信息学会议系列上进行计算机基因组学研究。BMC基因组学。2019; 20(增刊7):537。https://doi.org/10.1186/s12864-019-5846-3。

    文章PubMed PubMed Central Google学术搜索

  5. 5,

    Orlov YL,Galieva ER,Tatarinova电视台。SBB-2019的生物信息学研究。BMC生物信息学。2020; 21(增刊11):366。https://doi.org/10.1186/s12859-020-03712-1。

    文章PubMed PubMed Central Google学术搜索

  6. 6。

    Khlebodarova TM,Ree NA,弗吉尼亚州Likhoshvai。关于大肠杆菌细胞中亚硝酸盐水平的控制机制:数学模型。BMC微生物。2016; 16(增刊1):7。https://doi.org/10.1186/s12866-015-0619-x。

    CAS Article PubMed PubMed Central Google学术搜索

  7. 7。

    Peltek SE,Bryanskaya AV,Uvarova YE,Rozanov AS,Ivanisenko TV,Ivanisenko VA,Lazareva EV,Saik OV,Efimov VM,Zhmodik SM,Taran OP,Slynko NM,Shekhovtsov SV,Parmon VN,Dobretsov NL,Kolchanov NA。乌宗破火山口的年轻“油场”,是独特微生物生活的栖息地。BMC微生物。2020; 20(增刊2)。https://doi.org/10.1186/s12866-020-02012-1。

  8. 8。

    Dobretsov NL,Lazareva EV,Zhmodik SM,Bryanskaya AV,Morozova VV,Tikunova NV等。Uzon破火山口(堪察加半岛)石油站点的地质,水文地球化学和微生物学特征。拉斯地质地理学。2015; 56(1-2):39-63。

    文章Google学术搜索

  9. 9。

    Didyk BM,Simoneit BRT。瓜亚马斯盆地热液油及其对油气形成机理的启示。性质。1989; 342(6245):65-8。https://doi.org/10.1038/342065a0。

    CAS文章Google学术搜索

  10. 10。

    Simoneit BRT,Kvenvolden KA。比较热液石油的14C年龄。组织地球化学。1994; 21(5):525–9。https://doi.org/10.1016/0146-6380(94)90103-1。

    CAS文章Google学术搜索

  11. 11。

    Varfolomeev SD,Karpov GA,Synal HA,Lomakin SM,Nikolaev EN。地球上最年轻的天然油。Dokl Chem。2011; 438(1):144-7。https://doi.org/10.1134/S0012500811050053。

    CAS文章Google学术搜索

  12. 12

    Galimov EM,Sevast'yanov VS,Karpov GA,Kamaleeva AI,Kuznetsova OV,Konopleva IV,Vlasova LN。来自火山区的碳氢化合物。堪察加半岛的乌松破火山口渗出油。地球化学国际 2015; 53:1019–27。https://doi.org/10.1134/S0016702915120046。

    CAS文章Google学术搜索

  13. 13

    Rozanov AS,Korzhuk AV,Bryanskaya AV,Peltek SE。从乌桑破火山口(堪察加半岛,俄罗斯)的温泉中分离出的黄杆菌Anoxybacillus flavithermus KU2-6-11基因组序列草案。数据简介。2017; 16:758–61。https://doi.org/10.1016/j.dib.2017.11.095。

    文章PubMed PubMed Central Google学术搜索

  14. 14。

    Rozanov AS,Bryanskaya AV,Malup TK,Meshcheryakova IA,Lazareva EV,Taran OP,Ivanisenko TV,Ivanisenko VA,Zhmodik SM,Kolchanov NA,Peltek SE。Zavarzin温泉中的底栖生物微生物群落的分子分析(俄罗斯,堪察加半岛,乌松火山口)。BMC基因组学。2014; 15(Suppl 12):S12。https://doi.org/10.1186/1471-2164-15-S12-S12。

    文章PubMed PubMed Central Google学术搜索

  15. 15

    Bryanskaya AV,Malup TK,Lazareva EV,Taran OP,Rozanov AS,Efimov VM,Peltek SE。环境因素对新西伯利亚地区(俄罗斯)盐湖微生物群落组成的作用。BMC微生物。2016; 16:S4。https://doi.org/10.1186/s12866-015-0618-y。

    CAS文章Google学术搜索

  16. 16。

    Morozova V,Bokovaya O,Kozlova Y,Kurilshikov A,Babkin I,Tupikin A,Bondar A,Ryabchikova E,Brayanskaya A,Peltek S,Tikunova N.提示Siphoviridae家族中存在一个新属。极端微生物。2019; 23(5):599–612。https://doi.org/10.1007/s00792-019-01119-2。

    CAS文章PubMed Google学术搜索

  17. 17。

    Kulyashov M,Peltek SE,Akberdin IR。嗜热细菌Geobacillus icigianus生产2,3-丁二醇的基因组规模代谢模型。微生物。2020; 8(7):E1002。https://doi.org/10.3390/microorganisms8071002。

    文章PubMed Google学术搜索

  18. 18岁

    Likhoshvai VA,Golubyatnikov VP,Khlebodarova TM。圆形基因网络模型中的极限环受负反馈环调控。BMC生物信息学。2020; 21(Suppl 11):255。https://doi.org/10.1186/s12859-020-03598-z。

    CAS Article PubMed PubMed Central Google学术搜索

  19. 19

    Khlebodarova TM,弗吉尼亚州Likhoshvai。细菌和古细菌中非遗传抗生素耐受性的分子机制。摩尔生物学(莫斯科)。2019; 53(4):531-40。(俄语)。https://doi.org/10.1134/S0026898419040050。

    CAS文章Google学术搜索

  20. 20

    Orlov YL,Voropaeva EN,Chen M,Baranova AV。系统生物学和生物信息学(SBB-2019)学校的医学基因组学。BMC Med Genet。2020; 13(Suppl 8):127。https://doi.org/10.1186/s12920-020-00786-x。

    文章Google学术搜索

下载参考

我们感谢TV Tatarinova教授和AV Baranova所做的关于SBB-2019期刊问题的编辑工作。我们感谢NA Kolchanov院士在俄罗斯新西伯利亚组织的“系统生物学和生物信息学” -2019年学校的组织工作。我们感谢O. Tolmachov博士为稿件准备工作提供的帮助。

该出版物是在RUDN大学计划5-100(收件人:YO,AI,OD)的支持下编写的。

关于此补品

本文已作为BMC微生物学第20卷增补本2020:《系统生物学和生物信息学》-2019:微生物学中的选定主题的一部分发表。该补充剂的全部内容可在线访问-https://bmcmicrobiol.biomedcentral.com/articles/supplements/volume-20-supplement-2。

这篇文章的发表不包括在赞助范围内。

隶属关系

  1. 俄罗斯联邦卫生部莫斯科国立第一医科大学(谢切诺夫大学)IM舍切诺夫数字健康研究所,119146,俄罗斯莫斯科

    尤里·L·奥尔洛夫(Yuriy L.Orlov)

  2. 新西伯利亚国立大学,630090,俄罗斯新西伯利亚

    Yuriy L.Orlov和Elvira R.Galieva

  3. 俄罗斯人民友谊大学(RUDN大学)农业技术学院,117198,俄罗斯莫斯科

    Yuriy L.Orlov,Alexander N.Ignatov和Oxana B.Dobrovolskaya

  4. SB RAS细胞与遗传研究所,630090,俄罗斯新西伯利亚

    Yuriy L.Orlov和Oxana B.Dobrovolskaya

  5. PhytoEngineering R&D Center,141880,莫斯科地区,俄罗斯莫斯科

    亚历山大·伊格纳托夫(Alexander N.Ignatov)

s
  1. Yuriy L. Orlov查看作者出版物

    您也可以在PubMed Google学术搜索中搜索该作者 

  2. Alexander N. Ignatov查看作者出版物

    您也可以在PubMed Google学术搜索中搜索该作者 

  3. Elvira R. Galieva查看作者出版物

    您也可以在PubMed Google学术搜索中搜索该作者 

  4. Oxana B. Dobrovolskaya查看作者出版物

    您也可以在PubMed Google学术搜索中搜索该作者 

会费

YO是SBB-2019问题的客座编辑。AI,EG和OD是特邀编辑和组委会成员。所有作者都阅读,修订和批准了最终手稿。

作者信息

会议组织者兼SBB-2019特刊orlov@d-health.institute的客座编辑Yuriy L.Orlov。

Elvira R. Galieva,组委会成员。

亚历山大·伊格纳托夫(Alexander N. Ignatov),组委会成员。

Oxana B. Dobrovolskaya,组委会成员。

通讯作者

与Yuriy L. Orlov的对应。

利益争夺

作者宣称他们没有竞争利益。

发行人须知

对于已发布地图和机构隶属关系中的管辖权主张,Springer Nature保持中立。

开放存取本文是根据知识共享署名4.0国际许可许可的,该许可允许以任何媒介或格式使用,共享,改编,分发和复制,只要您对原始作者和出处提供适当的信誉,链接到知识共享许可,并指出是否进行了更改。本文的图像或其他第三方材料包含在该文章的知识共享许可中,除非在该材料的信用栏中另有说明。如果该材料未包含在该文章的创用CC许可中,并且您的预期用途未得到法律法规的许可或超出了许可的用途,则您需要直接获得版权所有者的许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/。

转载和许可

通过CrossMark验证货币和真实性

引用本文

Orlov,YL​​,Ignatov,AN,Galieva,ER等。系统生物学和生物信息学-2019(SBB-2019)学校的微生物学研究。BMC微生物学 20, 348(2020)。https://doi.org/10.1186/s12866-020-02038-5

下载引文

  • 发表时间

  • DOI https //doi.org/10.1186/s12866-020-02038-5

更新日期:2020-11-25
down
wechat
bug