当前位置: X-MOL 学术Compos. Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Influence of Oleylamine–Functionalized Boron Nitride Nanosheets on the Crystalline Phases, Mechanical and Piezoelectric Properties of Electrospun PVDF Nanofibers
Composites Science and Technology ( IF 8.3 ) Pub Date : 2021-02-01 , DOI: 10.1016/j.compscitech.2020.108570
Madeshwaran Sekkarapatti Ramasamy , Ashiqur Rahaman , Byungki Kim

Abstract Electrospun poly(vinylidene fluoride) nanofibers (PVDFNFs) have been receiving much attention in wearable and self–powered electronics because of their flexibility, biocompatibility and mechanical–to–electrical energy conversion ability. Although various types of nanofillers has been explored to overcome the inadequate mechanical properties and low piezoelectric responses of the PVDFNFs, developing high performance PVDFNFs composites is still challenging one due to limited interfacial interaction between the filler and polymer matrix. This work reports the fabrication of high performance piezoelectric composites comprising PVDFNFs and oleylamine functionalized boron nitride nanosheets (OLABN). The incorporation of OLABN significantly increased the electroactive γ–crystalline phases, Young’s modulus (823% enhancement) and ultimate tensile strength (343% enhancement) of PVDFNFs. Furthermore, sharp and rapid piezoelectric outputs can be obtained upon force applied by finger tapping on the composite based piezo sensors. An impressive 133% enhancement in the output power density was achieved for the composites. Moreover, the voltage produced upon finger tapping ( ∼ 3V) on the PVDFNFs–OLABN (4 wt%) composites sensor can charge a capacitor in 0.2 s and upon further amplification (10 × ), a 4V light–emitting diode turned onto glow. The findings of this study afford an effective route for the fabrication of high–performance PVDF based composites for energy harvesting applications.

中文翻译:

油胺功能化氮化硼纳米片对电纺 PVDF 纳米纤维晶相、机械和压电性能的影响

摘要 电纺聚偏二氟乙烯纳米纤维 (PVDFNFs) 因其柔韧性、生物相容性和机械-电能转换能力而在可穿戴和自供电电子产品中受到广泛关注。尽管已经探索了各种类型的纳米填料来克服 PVDFNFs 不足的机械性能和低压电响应,但由于填料和聚合物基体之间有限的界面相互作用,开发高性能 PVDFNFs 复合材料仍然具有挑战性。这项工作报告了包含 PVDFNF 和油胺功能化氮化硼纳米片 (OLBN) 的高性能压电复合材料的制造。OLBN 的加入显着增加了电活性 γ-晶相,PVDFNF 的杨氏模量(增强 823%)和极限拉伸强度(增强 343%)。此外,通过手指敲击基于复合材料的压电传感器施加的力,可以获得尖锐和快速的压电输出。复合材料的输出功率密度提高了 133%,令人印象深刻。此外,手指敲击 PVDFNFs-OLABN (4 wt%) 复合材料传感器时产生的电压(~3V)可以在 0.2 秒内为电容器充电,并在进一步放大(10 × )后,4V 发光二极管开始发光。这项研究的结果为制造用于能量收集应用的高性能 PVDF 基复合材料提供了一条有效途径。通过手指轻敲基于复合材料的压电传感器施加的力,可以获得尖锐和快速的压电输出。复合材料的输出功率密度提高了 133%,令人印象深刻。此外,手指敲击 PVDFNFs-OLABN (4 wt%) 复合材料传感器时产生的电压(~3V)可以在 0.2 秒内为电容器充电,并在进一步放大(10 × )后,4V 发光二极管开始发光。这项研究的结果为制造用于能量收集应用的高性能 PVDF 基复合材料提供了一条有效途径。通过手指轻敲基于复合材料的压电传感器施加的力,可以获得尖锐和快速的压电输出。复合材料的输出功率密度提高了 133%,令人印象深刻。此外,手指敲击 PVDFNFs-OLABN (4 wt%) 复合材料传感器时产生的电压(~3V)可以在 0.2 秒内为电容器充电,并在进一步放大(10 × )后,4V 发光二极管开始发光。这项研究的结果为制造用于能量收集应用的高性能 PVDF 基复合材料提供了一条有效途径。2 s 并进一步放大(10 × )后,一个 4V 的发光二极管开始发光。这项研究的结果为制造用于能量收集应用的高性能 PVDF 基复合材料提供了一条有效途径。2 s 和进一步放大(10 × )后,一个 4V 的发光二极管开始发光。这项研究的结果为制造用于能量收集应用的高性能 PVDF 基复合材料提供了一条有效途径。
更新日期:2021-02-01
down
wechat
bug