当前位置: X-MOL 学术Nat. Commun. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mechanically interlocked 3D multi-material micromachines
Nature Communications ( IF 16.6 ) Pub Date : 2020-11-24 , DOI: 10.1038/s41467-020-19725-6
C. C. J. Alcântara , F. C. Landers , S. Kim , C. De Marco , D. Ahmed , B. J. Nelson , S. Pané

Metals and polymers are dissimilar materials in terms of their physicochemical properties, but complementary in terms of functionality. As a result, metal-organic structures can introduce a wealth of novel applications in small-scale robotics. However, current fabrication techniques are unable to process three-dimensional metallic and polymeric components. Here, we show that hybrid microstructures can be interlocked by combining 3D lithography, mold casting, and electrodeposition. Our method can be used to achieve complex multi-material microdevices with unprecedented resolution and topological complexity. We show that metallic components can be combined with structures made of different classes of polymers. Properties of both metals and polymers can be exploited in parallel, resulting in structures with high magnetic responsiveness, elevated drug loading capacity, on-demand shape transformation, and elastic behavior. We showcase the advantages of our approach by demonstrating new microrobotic locomotion modes and controlled agglomeration of swarms.



中文翻译:

机械互锁的3D多材料微机

金属和聚合物在物理化学性质上是不同的材料,但在功能上是互补的。结果,金属有机结构可以在小型机器人中引入大量新颖的应用。但是,当前的制造技术无法处理三维金属和聚合物组件。在这里,我们表明可以通过组合3D光刻,铸模和电沉积来互锁混合微观结构。我们的方法可用于实现具有前所未有的分辨率和拓扑复杂性的复杂多材料微器件。我们表明金属成分可以与由不同种类的聚合物制成的结构结合。可以同时利用金属和聚合物的特性,从而产生具有高磁响应性的结构,药物载量增加,按需形状转换和弹性行为。我们通过演示新的微机器人运动模式和可控的群聚展示了我们方法的优势。

更新日期:2020-11-25
down
wechat
bug