当前位置: X-MOL 学术Energy Environ. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Stabilizing the OOH* intermediate via pre-adsorbed surface oxygen of a single Ru atom-bimetallic alloy for ultralow overpotential oxygen generation
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2020-11-04 , DOI: 10.1039/d0ee03183f
Jinsun Lee 1, 2, 3, 4, 5 , Ashwani Kumar 1, 2, 3, 4, 5 , Taehun Yang 1, 2, 3, 4, 5 , Xinghui Liu 1, 2, 3, 4, 5 , Amol R Jadhav 1, 2, 3, 4 , G. Hwan Park 1, 2, 3, 4, 5 , Yosep Hwang 1, 2, 3, 4, 5 , Jianmin Yu 1, 2, 3, 4, 5 , Chau TK Nguyen 1, 2, 3, 4, 5 , Yang Liu 1, 2, 3, 4, 5 , Sara Ajmal 1, 2, 3, 4, 5 , Min Gyu Kim 4, 6, 7, 8, 9 , Hyoyoung Lee 1, 2, 3, 4, 5
Affiliation  

Designing efficient oxygen evolution reaction (OER) electrocatalysts based on single-atom catalysts is a highly promising option for cost-effective alkaline water electrolyzers. However, the instability of the OOH* intermediate and high energy barrier for the rate-determining step (RDS) (O* to OOH*) on the pure bimetallic-alloy represent serious challenges. Here, we report atomically dispersed Ru single-atoms on a cobalt–iron bimetallic-alloy encapsulated by graphitic carbon (RuSACoFe2/G) as an efficient and durable electrocatalyst for the alkaline OER. In-depth X-ray absorption spectroscopy (XAS) and aberration-corrected transmission electron microscopy (AC-TEM) along with theoretical calculations were employed to validate the isolated Ru sites in the surface-oxygen rich alloy. RuSACoFe2/G displays exceptional intrinsic activity, achieving a record low overpotential of only 180 mV at 10 mA cm−2 with superior durability in alkali media. Density functional theory (DFT) simulations revealed that the isolated Ru sites with pre-adsorbed surface oxygen species on a bimetallic-alloy efficiently stabilize the OOH* intermediate and significantly reduce the energy barrier for the RDS, boosting the intrinsic OER activity. Our integrated alkaline electrolyzer demands a low cell voltage of 1.48 V at 10 mA cm−2, suggesting that it has potential for use in practical applications.

中文翻译:

通过单一Ru原子-双金属合金的预吸附表面氧稳定OOH *中间体,以产生超低的超电势氧

对于具有成本效益的碱性水电解槽而言,设计基于单原子催化剂的高效氧气析出反应(OER)电催化剂是非常有前途的选择。但是,纯双金属合金上用于速率确定步骤(RDS)(从O *到OOH *)的OOH *中间层和高能垒的不稳定性是严峻的挑战。在这里,我们报告了原子-分散的钌单原子在被石墨碳(Ru SA CoFe 2 / G)封装的钴-铁双金属合金上作为碱性OER的有效和持久的电催化剂。深入的X射线吸收光谱(XAS)和像差校正的透射电子显微镜(AC-TEM)以及理论计算被用来验证表面富氧合金中孤立的Ru位。茹SA CoFe 2 / G具有出色的固有活性,在10 mA cm -2时仅180 mV的创纪录低过电势,在碱性介质中具有出色的耐久性。密度泛函理论(DFT)模拟表明,在双金属合金上具有预吸附表面氧物种的孤立Ru位点有效地稳定了OOH *中间体,并显着降低了RDS的能垒,从而提高了OER的固有活性。我们的集成式碱性电解槽在10 mA cm -2时需要1.48 V的低电池电压,这表明它具有在实际应用中使用的潜力。
更新日期:2020-11-25
down
wechat
bug