当前位置: X-MOL 学术J. Phys. Chem. B › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nanofluidic Charge Transport under Strong Electrostatic Coupling Conditions
The Journal of Physical Chemistry B ( IF 2.8 ) Pub Date : 2020-11-24 , DOI: 10.1021/acs.jpcb.0c09638
Sahin Buyukdagli 1
Affiliation  

The comprehensive depiction of the many-body effects governing nanoconfined electrolytes is an essential step for the conception of nanofluidic devices with optimized performance. By incorporating self-consistently multivalent charges into the Poisson–Boltzmann equation dressed by a background monovalent salt, we investigate the impact of strong-coupling electrostatics on the nanofluidic transport of electrolyte mixtures. We find that the experimentally observed negative streaming currents in anionic nanochannels originate from the collective effect of Cl attraction by the interfacially adsorbed multivalent cations and the no-slip layer reducing the hydrodynamic contribution of these cations to the net current. The like-charge current condition emerging from this collective mechanism is shown to be the reversal of the average potential within the no-slip zone. Applying the formalism to surface-coated membrane nanoslits located in the giant dielectric permittivity regime, we reveal a new type of streaming current activated by attractive polarization forces. Under the effect of these forces, multivalent ions added to the KCl solution set a charge separation and generate a counterion current between the neutral slit walls where the pure KCl conductivity vanishes. The adjustability of the current characteristics solely via the valency and amount of the added multivalent ions identifies the underlying process as a promising mechanism for nanofluidic ion separation purposes.

中文翻译:

强静电耦合条件下的纳米流体电荷传输

对控制纳米受限电解质的多体效应的全面描述是概念化具有最佳性能的纳米流体装置的重要步骤。通过将自洽的多价电荷结合到由背景单价盐构成的Poisson-Boltzmann方程中,我们研究了强耦合静电对电解质混合物的纳米流体传输的影响。我们发现,实验观察到的负流在阴离子纳米通道电流从氯的共同作用起源-界面吸附的多价阳离子和防滑层的吸引力降低了这些阳离子对净电流的流体动力贡献。从这种集体机制中产生的类似充电电流状态显示为在防滑区域内平均电势的逆转。将形式主义应用于位于巨介电常数区域中的表面涂层膜纳米缝,我们揭示了一种新型的流电流,该流由吸引极化力激活。在这些力的作用下,添加到KCl溶液中的多价离子会形成电荷分离,并在纯KCl导电性消失的中性狭缝壁之间产生反离子电流。
更新日期:2020-12-10
down
wechat
bug