当前位置: X-MOL 学术Earth Planet. Sci. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
On the fate of impact-delivered metal in a terrestrial magma ocean
Earth and Planetary Science Letters ( IF 4.8 ) Pub Date : 2021-01-01 , DOI: 10.1016/j.epsl.2020.116680
Christian Maas , Lukas Manske , Kai Wünnemann , Ulrich Hansen

Abstract Impacts on Earth crucially influenced core formation and the subsequent evolution of Earth's mantle and may have contributed to late accretion of material. However, to what extent the present-day geochemical signature of Earth's mantle reflects the processes of core formation and late accretion, and how much of material delivered by giant impacts and by impacts of smaller projectiles during late accretion was incorporated into the core remains unclear. To improve the insight into these processes, it is of key importance to comprehend how impact-delivered metal droplets are dispersed and subsequently settle in a terrestrial magma ocean. Settling and mixing are potentially strongly influenced by the convective and rotational state of the magma ocean. Therefore, by means of numerical experiments in spherical geometry, we study how the convective state of the magma ocean and the potentially strong planetary rotation affect the settling of impact-delivered material in a deep global magma ocean. We reveal crucial differences in metal dispersion and in settling history depending on the impactor's target latitude. For an impact at either pole, the metal dispersion within the magma ocean is spatially limited while the metal droplets settle fast. Impacts at lower latitudes allow for a higher degree of dispersion, being accompanied by a slower metal settling. Consequently, metal-silicate equilibration may differ depending on the target latitude, being limited to certain localized domains of the magma ocean. We further demonstrate that the volume fraction undergoing metal-silicate equilibration seems to depend linearly on the impactor's diameter and may be largely underestimated in previous studies. Overall, we present a possible mechanism for heterogeneous metal-silicate equilibration and the generation of chemical heterogeneities and isotopic anomalies in Earth's mantle due to the influence of planetary rotation, potentially shaping the geochemical signatures that are observed today.

中文翻译:

关于地球岩浆海洋中撞击传递金属的命运

摘要 对地球的影响对地核的形成和随后的地幔演化产生了至关重要的影响,并且可能促成了物质的晚期增生。然而,目前地球地幔的地球化学特征在多大程度上反映了地核形成和后期吸积过程,以及在后期吸积过程中,有多少巨大撞击和较小射弹的撞击所提供的物质被纳入地核,目前尚不清楚。为了提高对这些过程的洞察力,了解撞击传递的金属液滴如何分散并随后沉降在陆地岩浆海洋中至关重要。沉降和混合可能会受到岩浆海洋的对流和旋转状态的强烈影响。因此,通过球面几何的数值实验,我们研究岩浆海洋的对流状态和潜在的强大行星自转如何影响撞击传递的物质在全球深层岩浆海洋中的沉降。我们揭示了金属分散和沉降历史的关键差异,具体取决于撞击器的目标纬度。对于任一极的撞击,岩浆海洋中的金属扩散在空间上是有限的,而金属液滴快速沉降。较低纬度的影响允许更高程度的分散,伴随着较慢的金属沉降。因此,金属硅酸盐平衡可能因目标纬度而异,仅限于岩浆海洋的某些局部区域。我们进一步证明,经历金属 - 硅酸盐平衡的体积分数似乎与撞击器线性相关 s 直径,可能在以前的研究中被大大低估。总体而言,我们提出了异质金属硅酸盐平衡以及由于行星自转的影响而在地幔中产生化学异质性和同位素异常的可能机制,这可能会影响今天观察到的地球化学特征。
更新日期:2021-01-01
down
wechat
bug