当前位置: X-MOL 学术Light Sci. Appl. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Magnetic plasmon resonances in nanostructured topological insulators for strongly enhanced light–MoS 2 interactions
Light: Science & Applications ( IF 20.6 ) Pub Date : 2020-11-23 , DOI: 10.1038/s41377-020-00429-x
Hua Lu , Zengji Yue , Yangwu Li , Yinan Zhang , Mingwen Zhang , Wei Zeng , Xuetao Gan , Dong Mao , Fajun Xiao , Ting Mei , Weiyao Zhao , Xiaolin Wang , Min Gu , Jianlin Zhao

Magnetic resonances not only play crucial roles in artificial magnetic materials but also offer a promising way for light control and interaction with matter. Recently, magnetic resonance effects have attracted special attention in plasmonic systems for overcoming magnetic response saturation at high frequencies and realizing high-performance optical functionalities. As novel states of matter, topological insulators (TIs) present topologically protected conducting surfaces and insulating bulks in a broad optical range, providing new building blocks for plasmonics. However, until now, high-frequency (e.g. visible range) magnetic resonances and related applications have not been demonstrated in TI systems. Herein, we report for the first time, to our knowledge, a kind of visible range magnetic plasmon resonances (MPRs) in TI structures composed of nanofabricated Sb2Te3 nanogrooves. The experimental results show that the MPR response can be tailored by adjusting the nanogroove height, width, and pitch, which agrees well with the simulations and theoretical calculations. Moreover, we innovatively integrated monolayer MoS2 onto a TI nanostructure and observed strongly reinforced light–MoS2 interactions induced by a significant MPR-induced electric field enhancement, remarkable compared with TI-based electric plasmon resonances (EPRs). The MoS2 photoluminescence can be flexibly tuned by controlling the incident light polarization. These results enrich TI optical physics and applications in highly efficient optical functionalities as well as artificial magnetic materials at high frequencies.



中文翻译:

纳米结构拓扑绝缘子中的磁等离子体共振,可大大增强光与MoS 2的相互作用

磁共振不仅在人造磁性材料中起着至关重要的作用,而且还为光的控制和与物质的相互作用提供了一种有希望的方式。近来,在等离子体系统中,磁共振效应引起了人们的特别关注,以克服高频下的磁响应饱和并实现高性能的光学功能。作为一种新的物质状态,拓扑绝缘体(TI)在广泛的光学范围内提供了受拓扑保护的导电表面和绝缘体,为等离激元学提供了新的构建基块。但是,到目前为止,TI系统中尚未证明高频(例如可见范围)磁共振和相关应用。在此,我们首次报告,据我们所知,2 Te 3纳米槽。实验结果表明,可以通过调节纳米沟槽的高度,宽度和间距来调整MPR响应,这与仿真和理论计算非常吻合。此外,我们创新地将单层MoS 2集成到TI纳米结构上,并观察到MPR引起的电场增强明显增强了光与MoS 2的相互作用,与基于TI的电等离子体共振(EPR)相比,效果显着。MoS 2通过控制入射光的偏振可以灵活地调节光致发光。这些结果丰富了TI光学物理学及其在高效光学功能以及高频人工磁性材料方面的应用。

更新日期:2020-11-23
down
wechat
bug