当前位置: X-MOL 学术Laser Photonics Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enhanced Graphene Plasmonic Mode Energy for Highly Sensitive Molecular Fingerprint Retrieval
Laser & Photonics Reviews ( IF 9.8 ) Pub Date : 2020-11-22 , DOI: 10.1002/lpor.202000300
Jinpeng Nong 1 , Linlong Tang 2 , Guilian Lan 1 , Peng Luo 1 , Zhancheng Li 2 , Deping Huang 2 , Juemin Yi 3 , Haofei Shi 2 , Wei Wei 1
Affiliation  

Graphene plasmons with tightly confined fields and actively tunable resonant frequencies enable the selective detection of molecular vibrational fingerprints with ultrahigh sensitivity, significantly promoting the development of surface‐enhanced infrared absorption spectroscopies (SEIRAS). However, current experimentally obtained enhancements are much smaller than the theoretical prediction due to the extremely low graphene plasmonic mode energy. In this paper, the strategies to improve the mode energy are theoretically and experimentally investigated in a one‐port graphene plasmonic system. By optimizing the Fabry–Pérot cavity length and employing multi‐layer graphene to drive the system into the near critical coupling regime, the localized graphene plasmonic absorptions can be improved from 3% to more than 92%. This induces a 37 times improvement of graphene plasmonic mode energy from 0.4 × 10−13 to 1.5 × 10−12 J per period for the strong plasmon–molecule interactions, enabling the highly sensitive detection of 8 nm thick molecular film. The SEIRAS experimental results demonstrate that a maximum enhancement factor of 162 can be achieved, which is one order larger than that of the reported localized graphene plasmonic sensors. The results showcase the practical usability of localized graphene plasmons for the next‐generation high sensitive nanoscale infrared spectroscopy.

中文翻译:

增强的石墨烯等离子模式能量用于高灵敏度的分子指纹检索

具有严格限制的场和主动可调的共振频率的石墨烯等离子体激元能够以超高灵敏度选择性检测分子振动指纹,从而显着促进了表面增强红外吸收光谱(SEIRAS)的发展。但是,由于极低的石墨烯等离激元模态能,目前通过实验获得的增强效果远小于理论预测值。本文在理论上和实验上研究了单端口石墨烯等离子体系统中提高模态能量的策略。通过优化Fabry-Pérot腔长度并采用多层石墨烯将系统驱动到接近临界耦合状态,可以将局部石墨烯的等离激元吸收率从3%提高到92%以上。-13至1.5×10 -12 J /周期,用于强烈的等离激元-分子相互作用,可高度灵敏地检测8 nm厚的分子膜。SEIRAS实验结果表明,可以实现最大增强因子162,这比已报道的局部石墨烯等离子体传感器大一倍。结果表明,局部石墨烯等离子体激元可用于下一代高灵敏度纳米尺度红外光谱。
更新日期:2021-01-08
down
wechat
bug