当前位置: X-MOL 学术Laser Photonics Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Extremely Polarized and Efficient Hot Electron Intraband Luminescence from Aluminum Nanostructures for Nonlinear Optical Encoding
Laser & Photonics Reviews ( IF 9.8 ) Pub Date : 2020-11-22 , DOI: 10.1002/lpor.202000339
Yinan Zhang 1, 2 , Jing Han 2 , Liu Shi 2 , Shiren Chen 2 , Ziwei Feng 2 , Hua Lu 3 , Min Gu 1 , Xiangping Li 2
Affiliation  

Hot electron intraband luminescence from plasmonic nanostructures is of critical importance for integrated photonic devices and applications in ultracompact nanospectrometer, bioimaging, information encryption et al. Although, the past few decades have witnessed tremendous progress in enhancing the luminescence efficiency of plasmonic nanostructures, the luminescence is usually unpolarized or partially polarized and difficult to be tailored because of its incoherent and broadband feature, significantly limiting its applications. Here the current limitation, demonstrating extremely polarized hot electron intraband luminescence with record‐high degree of linear polarization (≈1) and ≈40 000‐fold enhancement from judiciously designed aluminium (Al) plasmonic nanostructures, is broken through. The designed nanostructures exhibit strong polarization‐dependent anisotropic scattering across the visible band which efficiently modulates the luminescence in orthogonal directions. Leveraging this appealing feature, high‐contrast analyzer controlled optical image encryption and camouflage for information security applications are demonstrated. This research lays the groundwork for integrated nonlinear photonic devices based on complementary metal–oxide–semiconductor (CMOS)‐compatible plasmonic materials and paves the way for ultracompact on‐chip photonic devices demanding polarized white light sources.

中文翻译:

铝纳米结构的极端极化和高效热电子带内发光,用于非线性光学编码

等离子体纳米结构的热电子带内发光对于集成光子器件及其在超紧凑纳米光谱仪,生物成像,信息加密等领域的应用至关重要。尽管在过去的几十年中,在提高等离子体纳米结构的发光效率方面取得了巨大的进步,但是由于其不相干和宽带特性,发光通常是非偏振的或部分偏振的,并且难以定制,从而严重限制了其应用。突破了当前的局限性,证明了通过精心设计的铝(Al)等离子体纳米结构,具有极高的线性极化(≈1)和约40,000倍的增强的极极化热电子带内发光。设计的纳米结构在可见光带上表现出强烈的偏振相关各向异性散射,可有效调节正交方向的发光。利用此吸引人的功能,演示了用于信息安全应用的高对比度分析仪控制的光学图像加密和伪装。这项研究为基于互补金属氧化物半导体(CMOS)兼容等离子体材料的集成非线性光子器件奠定了基础,并为需要偏振白光光源的超紧凑型片上光子器件铺平了道路。演示了用于信息安全应用的高对比度分析仪控制的光学图像加密和伪装。这项研究为基于互补金属氧化物半导体(CMOS)兼容等离子体材料的集成非线性光子器件奠定了基础,并为需要偏振白光光源的超紧凑型片上光子器件铺平了道路。演示了用于信息安全应用的高对比度分析仪控制的光学图像加密和伪装。这项研究为基于互补金属氧化物半导体(CMOS)兼容等离子体材料的集成非线性光子器件奠定了基础,并为需要偏振白光光源的超紧凑型片上光子器件铺平了道路。
更新日期:2021-01-08
down
wechat
bug