当前位置: X-MOL 学术J. Microsc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Phase determination in dual phase steels via HREBSD‐based tetragonality mapping
Journal of Microscopy ( IF 2 ) Pub Date : 2020-12-06 , DOI: 10.1111/jmi.12980
Derrik Adams 1 , Michael P. Miles 1 , Eric R. Homer 1 , Tyson Brown 2 , Raj K. Mishra 2 , David T. Fullwood 1
Affiliation  

Electron Backscatter Diffraction (EBSD) is a widely used approach for characterizing the microstructure of various materials. However, it is difficult to accurately distinguish similar (body centered cubic and body centered tetragonal, with small tetragonality) phases in steels using standard EBSD software. One method to tackle the problem of phase distinction is to measure the tetragonality of the phases, which can be done using simulated patterns and cross-correlation techniques to detect distortion away from a perfectly cubic crystal lattice. However, small errors in the determination of microscope geometry (the so-called pattern or projection center) can cause significant errors in tetragonality measurement and lead to erroneous results. This paper utilizes a new approach for accurate pattern center determination via a strain minimization routine across a large number of grains in dual phase steels. Tetragonality maps are then produced and used to identify phase and estimate local carbon content. The technique is implemented using both kinetically simulated and dynamically simulated patterns to determine their relative accuracy. Tetragonality maps, and subsequent phase maps, based on dynamically simulated patterns in a point-by-point and grain average comparison are found to consistently produce more precise and accurate results, with close to 90% accuracy for grain phase identification, when compared with an image-quality identification method. The error in tetragonality measurements appears to be of the order of 1%, thus producing a commensurate ∼0.2% error in carbon content estimation. Such an error makes the technique unsuitable for estimation of total carbon content of most commercial steels, which often have carbon levels below 0.1%. However, even in the DP steel for this study (0.1 wt.% carbon) it can be used to map carbon in regions with higher accumulation (such as in martensite with non-homogeneous carbon content). This article is protected by copyright. All rights reserved.

中文翻译:

通过基于 HREBSD 的四方性映射确定双相钢的相

电子背散射衍射 (EBSD) 是一种广泛用于表征各种材料微观结构的方法。然而,使用标准 EBSD 软件很难准确区分钢中的相似(体心立方和体心四方,具有小四方性)相。解决相位差异问题的一种方法是测量相位的四方性,这可以使用模拟图案和互相关技术来检测远离完美立方晶格的畸变。但是,显微镜几何形状(所谓的图案或投影中心)的确定中的小错误会导致四边形测量中的重大错误并导致错误结果。本文利用一种新方法通过双相钢中大量晶粒的应变最小化程序来准确确定图案中心。然后生成四边形图并用于识别相和估计局部碳含量。该技术是使用动力学模拟和动态模拟模式来实现的,以确定它们的相对精度。发现基于逐点和晶粒平均比较中的动态模拟模式的四方性图和随后的相图可以始终如一地产生更精确和准确的结果,与常规相比较相比,晶粒相识别的准确度接近 90%。图像质量识别方法。四方性测量中的误差似乎在 1% 的数量级,因此产生相应的 ∼0。碳含量估计误差为 2%。这种错误使得该技术不适用于估计大多数商业钢的总碳含量,这些钢的碳含量通常低于 0.1%。然而,即使在用于本研究的 DP 钢(0.1 wt.% 碳)中,它也可用于绘制具有较高积累的区域(例如具有非均匀碳含量的马氏体)中的碳。本文受版权保护。版权所有。
更新日期:2020-12-06
down
wechat
bug