当前位置: X-MOL 学术J. Geophys. Res. Atmos. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Examining the Climate Effects of a Regional Nuclear Weapons Exchange Using a Multiscale Atmospheric Modeling Approach
Journal of Geophysical Research: Atmospheres ( IF 4.4 ) Pub Date : 2020-11-23 , DOI: 10.1029/2020jd033056
Benjamin M. Wagman 1 , Katherine A. Lundquist 1 , Qi Tang 1 , Lee G. Glascoe 1 , David C. Bader 1
Affiliation  

Recent studies examine the potential for large urban fires ignited in a hypothetical nuclear exchange of one hundred 15 kt weapons between India and Pakistan to alter the climate (e.g., Mills et al., 2014, https://doi.org/10.1002/2013EF000205, and Reisner et al., 2018, https://doi.org/10.1002/2017JD027331). In this study, the global climate forcing and response is predicted by combining two atmospheric models, which together span the micro‐scale to global scale processes involved. Individual fire plumes are modeled using the Weather Research and Forecasting (WRF) model, and the climate response is predicted by injecting the WRF‐simulated black carbon (BC) emissions into the Energy Exascale Earth System Model (E3SM) atmosphere model Version 1 (EAMv1). Consistent with previous studies, the radiative forcing depends on smoke quantity and injection height, examined here as functions of fuel loading and atmospheric conditions. If the fuel burned is 1 g cm−2, BC is quickly removed from the troposphere, causing no global mean climate forcing. If the fuel burned is 16 g cm−2 and 100 such fires occurred simultaneously with characteristics similar to historical large urban firestorms, BC reaches the stratosphere, reducing solar radiation and causing cooling at the Earth's surface. Uncertainties in smoke composition and aerosol representation cause large uncertainties in the magnitude of the radiative forcing and cooling. The approximately 4 yr duration of the radiative forcing is shorter than the 8 to 15 yr that has previously been simulated. Uncertainties point to the need for further development of potential nuclear exchange scenarios, quantification of fuel loading, and improved understanding of fire propagation and aerosol modeling.

中文翻译:

使用多尺度大气模拟方法研究区域核武器交换的气候影响

最近的研究研究了在印度和巴基斯坦之间以一百一十五克拉的武器进行核交换以改变气候的假设引发的大型城市大火的可能性(例如,米尔斯等人,2014,https://doi.org/10.1002/2013EF000205 ,以及Reisner等人,2018,https://doi.org/10.1002/2017JD027331)。在这项研究中,通过组合两个大气模型来预测全球气候强迫和响应,这两个模型共同涵盖了从微观到全球的过程。使用“天气研究与预报(WRF)”模型对单个烟羽建模,并通过将WRF模拟的黑碳(BC)排放物注入能源亿亿地球系统模型(E3SM)大气模型版本1(EAMv1)中来预测气候响应。 )。与以前的研究一致,辐射强迫取决于烟雾量和喷射高度,在此作为燃料负荷和大气条件的函数进行了检查。如果燃烧的燃油为1克厘米−2,BC被迅速从对流层移走,没有引起全球平均气候强迫。如果燃烧的燃料为16 g cm -2,并且同时发生100起此类火灾,其特征类似于历史上的大型城市暴风雨,则BC到达平流层,从而减少太阳辐射并在地球表面造成冷却。烟雾成分和气溶胶表示的不确定性导致辐射强迫和冷却幅度的不确定性很大。大约4年的辐射强迫持续时间比以前模拟的8至15年短。不确定性表明需要进一步开发潜在的核交换方案,量化燃料装载以及对火势蔓延和气溶胶模型的进一步了解。
更新日期:2020-12-14
down
wechat
bug