当前位置: X-MOL 学术Int. J. Energy Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Thermal behavior of lithium‐ion battery in microgrid application: Impact and management system
International Journal of Energy Research ( IF 4.3 ) Pub Date : 2020-11-22 , DOI: 10.1002/er.6229
Azri H. Hasani 1 , Muhamad Mansor 2 , Vigna Kumaran 2 , Ahmad W. M. Zuhdi 3 , Yong J. Ying 2 , Mahammad Abdul Hannan 2 , Fazrena A. Hamid 2 , Muhamad S. A. Rahman 2 , Nur A. Salim 4
Affiliation  

Safe and reliable operation is among the considerations when integrating lithium‐ion batteries as the energy storage system in microgrids. A lithium‐ion battery is very sensitive to temperature in which it is one of the critical factors affecting the performance and limiting the practical application of the battery. Furthermore, the adverse effects differ according to the temperature. The susceptibility of lithium‐ion battery to temperature imposes the need to deploy an efficient battery thermal management system to ensure the safe operation of the battery while at the same time maximizing its performance and life cycle. To design a good thermal management system, accurate temperature measurement is vital to assist the battery thermal management system in managing relevant states such as the stage‐of‐charge and state‐of‐health of the battery. This article outlines the effects of low and high temperatures on the performance of Li‐ion batteries. Next, a review of currently available internal temperature monitoring approaches is presented based on their feasibility and complexity. Then, an overview of battery thermal management systems based on different cooling mediums is presented. This includes air cooling, liquid cooling, phase change material (PCM) cooling, heat pipe cooling, boiling‐based cooling, and solid‐state cooling. The final section of this article discusses the practical implementation of the internal temperature measurement approach and battery thermal management system for microgrids. From the review, a suitable candidate is the flexible, low maintenance, and long lifetime hybrid battery thermal management system that combines heat pipe cooling and solid‐state cooling. It is capable of maintaining the maximum operating temperature of the battery within 45°C at up to 3C discharge rate while being a relatively simple system. Additionally, passive PCM with thermally conductive filler can also be employed to assist the hybrid battery thermal management system in improving the temperature uniformity well within 5°C.

中文翻译:

锂离子电池在微电网中的热行为:影响和管理系统

将锂离子电池作为微电网中的储能系统时,要考虑安全可靠的操作。锂离子电池对温度非常敏感,在锂离子电池中,锂离子电池是影响电池性能并限制电池实际应用的关键因素之一。此外,不利影响根据温度而不同。锂离子电池对温度的敏感性迫使需要部署高效的电池热管理系统,以确保电池的安全运行,同时最大化其性能和使用寿命。为了设计一个好的热管理系统,准确的温度测量对于协助电池热管理系统管理相关状态(例如电池的充电阶段和健康状态)至关重要。本文概述了低温和高温对锂离子电池性能的影响。接下来,基于其可行性和复杂性,介绍了当前可用的内部温度监控方法。然后,概述了基于不同冷却介质的电池热管理系统。这包括空气冷却,液体冷却,相变材料(PCM)冷却,热管冷却,沸腾冷却和固态冷却。本文的最后一部分讨论了用于微电网的内部温度测量方法和电池热管理系统的实际实现。通过审查,将热管冷却和固态冷却相结合的灵活,低维护,长寿命的混合动力电池热管理系统是一个合适的选择。它是一个相对简单的系统,能够在最高3C放电速率下将电池的最高工作温度维持在45°C以内。另外,带有导热填料的无源PCM也可用于协助混合电池热管理系统很好地改善5°C内的温度均匀性。
更新日期:2020-11-22
down
wechat
bug