当前位置: X-MOL 学术Adv. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Strain Tuning via Larger Cation and Anion Codoping for Efficient and Stable Antimony‐Based Solar Cells
Advanced Science ( IF 14.3 ) Pub Date : 2020-11-23 , DOI: 10.1002/advs.202002391
Riming Nie 1 , Kyoung Su Lee 1 , Manman Hu 1 , Sang Il Seok 1
Affiliation  

Strain induced by lattice distortion is one of the key factors that affect the photovoltaic performance via increasing defect densities. The unsatisfied power conversion efficiencies (PCEs) of solar cells based on antimony chalcogenides (Sb‐Chs) are owing to their photoexcited carriers being self‐trapped by the distortion of Sb2S3 lattice. However, strain behavior in Sb‐Chs‐based solar cells has not been investigated. Here, strain tuning in Sb‐Chs is demonstrated by simultaneously replacing Sb and S with larger Bi and I ions, respectively. Bi/I codoped Sb2S3 cells are fabricated using poly[2,6‐(4,4‐bis(2‐ethylhexyl)‐4H‐cyclopenta[2,1‐b;3,4‐b']dithiophene)‐alt‐4,7‐(2,1,3‐enzothiadiazole)] as the hole‐transporting layer. Codoping reduced the bandgap and rendered a bigger tension strain (1.76 × 10−4) to a relatively smaller compression strain (−1.29 × 10−4). The 2.5 mol% BiI3 doped Sb2S3 cell presented lower trap state energy level than the Sb2S3 cell; moreover, this doping amount effectively passivated the trap states. This codoping shows a similar trend even in the low bandgap Sb2(SxSe1‐x)3 cell, resulting in 7.05% PCE under the standard illumination conditions (100 mW cm−2), which is one of the top efficiencies in solution processing Sb2(SxSe1‐x)3 solar cells. Furthermore, the doped cells present higher humidity, thermal and photo stability. This study provides a new strategy for stable Pb‐free solar cells.

中文翻译:

通过更大的阳离子和阴离子共掺杂进行应变调谐,以实现高效稳定的锑基太阳能电池

晶格畸变引起的应变是通过增加缺陷密度影响光伏性能的关键因素之一。基于锑硫属化物(Sb-Chs)的太阳能电池的功率转换效率(PCE)不理想是由于其光生载流子因Sb 2 S 3晶格的畸变而被自捕获。然而,Sb-Chs 太阳能电池的应变行为尚未得到研究。在这里,Sb-Chs 中的应变调节是通过同时分别用较大的 Bi 和 I 离子替换 Sb 和 S 来证明的。Bi/I共掺杂Sb 2 S 3电池采用聚[2,6-(4,4-双(2-乙基己基)-4H-环戊二烯[2,1-b;3,4-b']二噻吩)-制造alt-4,7-(2,1,3-恩并噻二唑)]作为空穴传输层。共掺杂减小了带隙,并将较大的拉伸应变(1.76 × 10 -4)变为相对较小的压缩应变(-1.29 × 10 -4)。2.5 mol% BiI3 掺杂的 Sb 2 S 3电池表现出比 Sb 2 S 3电池更低的陷阱态能级;此外,这种掺杂量有效地钝化了陷阱态。即使在低带隙 Sb 2 (S x Se 1‐x ) 3电池中,这种共掺杂也表现出类似的趋势,在标准照明条件 (100 mW cm -2 )下产生 7.05% 的 PCE ,这是该领域最高效率之一。溶液处理Sb 2 (S x Se 1-x ) 3太阳能电池。此外,掺杂电池具有更高的湿度、热和光稳定性。这项研究为稳定的无铅太阳能电池提供了一种新策略。
更新日期:2021-01-07
down
wechat
bug