当前位置: X-MOL 学术Nucl. Eng. Des. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Modeling of a cold thermal energy storage for the flexibility of thermal power plants coupled to Brayton cycles
Nuclear Engineering and Design ( IF 1.9 ) Pub Date : 2021-01-01 , DOI: 10.1016/j.nucengdes.2020.110950
Gédéon Mauger , Nicolas Tauveron

Abstract As the share of variable renewable energy in the electricity generation continues to increase, electricity markets are facing significant variations of electricity prices. Thermal power plants that generate base-load electricity are not the most suitable for such markets. In the work reported here, a cold thermal energy storage coupled to a Brayton power conversion cycle for peak capacity generation is studied. Peak capacity is usually reached due to hot thermal storage, which increases the maximum temperature of the cycle. However, it is also possible to reduce the minimum temperature reached by the cycle to increase the power cycle efficiency. For this purpose, a cold thermal energy storage is used. It is designed to meet the needs of primary and secondary reserves required for grid frequency control. This typically represents a 7% power increase reached within 2 min over a time span of 15 min. A dynamic model of the entire 559MWe power plant is used to assess storage capacity, electrical power dynamics and impact on the plant. Since only 1700 m3 of chilled water are required, the results obtained are promising. The chilled water is generated either by a refrigeration system when the demand for electricity is low or by an absorption chiller operated by the waste heat generated by the Brayton cycle. In the past, important research work has been devoted to the development and deployment of large cold thermal energy storage for air conditioning. As a result, for such Brayton power cycles, it is possible to extend the time of peak power generation to several hours.

中文翻译:

与布雷顿循环耦合的热电厂灵活性的冷热能存储建模

摘要 随着可变可再生能源在发电中的份额不断增加,电力市场面临着电价的显着波动。产生基本负荷电力的火力发电厂并非最适合此类市场。在这里报告的工作中,研究了与布雷顿功率转换循环耦合的冷热能存储,以产生峰值容量。由于热蓄热,通常会达到峰值容量,这会增加循环的最高温度。但是,也可以降低循环达到的最低温度以提高功率循环效率。为此,使用冷热能存储。它旨在满足电网频率控制所需的初级和次级储备需求。这通常表示在 15 分钟的时间跨度内在 2 分钟内达到 7% 的功率增加。整个 559MWe 发电厂的动态模型用于评估存储容量、电力动态和对发电厂的影响。由于只需要 1700 立方米的冷冻水,因此获得的结果很有希望。冷冻水由电力需求低时的制冷系统或由布雷顿循环产生的废热运行的吸收式制冷机产生。过去,重要的研究工作一直致力于空调大型冷热储能的开发和部署。因此,对于这种布雷顿发电循环,可以将峰值发电时间延长到几个小时。整个 559MWe 发电厂的动态模型用于评估存储容量、电力动态和对发电厂的影响。由于只需要 1700 立方米的冷冻水,因此获得的结果很有希望。冷冻水由电力需求低时的制冷系统或由布雷顿循环产生的废热运行的吸收式制冷机产生。过去,重要的研究工作一直致力于空调大型冷热储能的开发和部署。因此,对于这种布雷顿发电循环,可以将峰值发电时间延长到几个小时。整个 559MWe 发电厂的动态模型用于评估存储容量、电力动态和对发电厂的影响。由于只需要 1700 立方米的冷冻水,因此获得的结果很有希望。冷冻水由电力需求低时的制冷系统或由布雷顿循环产生的废热运行的吸收式制冷机产生。过去,重要的研究工作一直致力于空调大型冷热储能的开发和部署。因此,对于这种布雷顿发电循环,可以将峰值发电时间延长到几个小时。取得的结果是有希望的。冷冻水由电力需求低时的制冷系统或由布雷顿循环产生的废热运行的吸收式制冷机产生。过去,重要的研究工作一直致力于空调大型冷热储能的开发和部署。因此,对于这种布雷顿发电循环,可以将峰值发电时间延长到几个小时。取得的结果是有希望的。冷冻水由电力需求低时的制冷系统或由布雷顿循环产生的废热运行的吸收式制冷机产生。过去,重要的研究工作一直致力于空调大型冷热储能的开发和部署。因此,对于这种布雷顿发电循环,可以将峰值发电时间延长到几个小时。
更新日期:2021-01-01
down
wechat
bug